IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i1d10.1007_s10957-015-0775-z.html
   My bibliography  Save this article

Lagrange Duality for Evenly Convex Optimization Problems

Author

Listed:
  • María D. Fajardo

    (University of Alicante)

  • Margarita M. L. Rodríguez

    (University of Alicante)

  • José Vidal

    (University of Alicante)

Abstract

An evenly convex function on a locally convex space is an extended real-valued function, whose epigraph is the intersection of a family of open halfspaces. In this paper, we consider an infinite-dimensional optimization problem, for which both objective function and constraints are evenly convex, and we recover the classical Lagrange dual problem for it, via perturbational approach. The aim of the paper was to establish regularity conditions for strong duality between both problems, formulated in terms of even convexity.

Suggested Citation

  • María D. Fajardo & Margarita M. L. Rodríguez & José Vidal, 2016. "Lagrange Duality for Evenly Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 109-128, January.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:1:d:10.1007_s10957-015-0775-z
    DOI: 10.1007/s10957-015-0775-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0775-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0775-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Paul Penot, 2013. "Variational Analysis for the Consumer Theory," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 769-794, December.
    2. M. Fajardo & J. Vicente-Pérez & M. Rodríguez, 2012. "Infimal convolution, c-subdifferentiability, and Fenchel duality in evenly convex optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 375-396, July.
    3. Goberna, Miguel A. & Rodri'guez, Margarita M.L., 2006. "Analyzing linear systems containing strict inequalities via evenly convex hulls," European Journal of Operational Research, Elsevier, vol. 169(3), pages 1079-1095, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. D. Fajardo & J. Vidal, 2018. "Necessary and Sufficient Conditions for Strong Fenchel–Lagrange Duality via a Coupling Conjugation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 57-73, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Fajardo & J. Vicente-Pérez & M. Rodríguez, 2012. "Infimal convolution, c-subdifferentiability, and Fenchel duality in evenly convex optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 375-396, July.
    2. Vu Thi Huong & Jen-Chih Yao & Nguyen Dong Yen, 2017. "On the Stability and Solution Sensitivity of a Consumer Problem," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 567-589, November.
    3. M. D. Fajardo & J. Vidal, 2018. "Necessary and Sufficient Conditions for Strong Fenchel–Lagrange Duality via a Coupling Conjugation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 57-73, January.
    4. Satoshi Suzuki, 2010. "Set containment characterization with strict and weak quasiconvex inequalities," Journal of Global Optimization, Springer, vol. 47(2), pages 273-285, June.
    5. M. Volle & J. E. Martínez-Legaz & J. Vicente-Pérez, 2015. "Duality for Closed Convex Functions and Evenly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 985-997, December.
    6. Satoshi Suzuki & Daishi Kuroiwa, 2011. "On Set Containment Characterization and Constraint Qualification for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 554-563, June.
    7. Margarita M. L. Rodríguez & José Vicente-Pérez, 2017. "On Finite Linear Systems Containing Strict Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 131-154, April.
    8. Satoshi Suzuki & Daishi Kuroiwa, 2009. "Set containment characterization for quasiconvex programming," Computational Optimization and Applications, Springer, vol. 45(4), pages 551-563, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:1:d:10.1007_s10957-015-0775-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.