IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v169y2006i3p1079-1095.html
   My bibliography  Save this article

Analyzing linear systems containing strict inequalities via evenly convex hulls

Author

Listed:
  • Goberna, Miguel A.
  • Rodri'guez, Margarita M.L.

Abstract

No abstract is available for this item.

Suggested Citation

  • Goberna, Miguel A. & Rodri'guez, Margarita M.L., 2006. "Analyzing linear systems containing strict inequalities via evenly convex hulls," European Journal of Operational Research, Elsevier, vol. 169(3), pages 1079-1095, March.
  • Handle: RePEc:eee:ejores:v:169:y:2006:i:3:p:1079-1095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00275-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margarita M. L. Rodríguez & José Vicente-Pérez, 2017. "On Finite Linear Systems Containing Strict Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 131-154, April.
    2. Satoshi Suzuki, 2010. "Set containment characterization with strict and weak quasiconvex inequalities," Journal of Global Optimization, Springer, vol. 47(2), pages 273-285, June.
    3. Satoshi Suzuki & Daishi Kuroiwa, 2011. "On Set Containment Characterization and Constraint Qualification for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 554-563, June.
    4. M. Fajardo & J. Vicente-Pérez & M. Rodríguez, 2012. "Infimal convolution, c-subdifferentiability, and Fenchel duality in evenly convex optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 375-396, July.
    5. M. Volle & J. E. Martínez-Legaz & J. Vicente-Pérez, 2015. "Duality for Closed Convex Functions and Evenly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 985-997, December.
    6. Satoshi Suzuki & Daishi Kuroiwa, 2009. "Set containment characterization for quasiconvex programming," Computational Optimization and Applications, Springer, vol. 45(4), pages 551-563, December.
    7. María D. Fajardo & Margarita M. L. Rodríguez & José Vidal, 2016. "Lagrange Duality for Evenly Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 109-128, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:169:y:2006:i:3:p:1079-1095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.