IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v166y2015i3d10.1007_s10957-014-0629-0.html
   My bibliography  Save this article

Optimal Debt Ratio and Consumption Strategies in Financial Crisis

Author

Listed:
  • Zhuo Jin

    (The University of Melbourne)

Abstract

This paper derives the optimal debt ratio and consumption strategies for an economy during the financial crisis. Taking into account the impact of labor market condition during the financial crisis, the production rate function is stochastic and affected by the government fiscal policy and unanticipated shocks. The objective is to maximize the total expected discounted utility of consumption in the infinite time horizon. Using dynamic programming principle, the value function is a solution of Hamilton–Jacobi–Bellman (HJB) equation. The subsolution-supersolution method is used to verify the existence of classical solutions of the HJB equation. The explicit solution of the value function is derived, and the corresponding optimal debt ratio and consumption strategies are obtained. An example is provided to illustrate the methodologies and some interesting economic insights.

Suggested Citation

  • Zhuo Jin, 2015. "Optimal Debt Ratio and Consumption Strategies in Financial Crisis," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 1029-1050, September.
  • Handle: RePEc:spr:joptap:v:166:y:2015:i:3:d:10.1007_s10957-014-0629-0
    DOI: 10.1007/s10957-014-0629-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0629-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0629-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Tao Pang, 2006. "Stochastic Portfolio Optimization With Log Utility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 869-887.
    3. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    4. Jiaqin Wei & Hailiang Yang & Rongming Wang, 2010. "Classical and Impulse Control for the Optimization of Dividend and Proportional Reinsurance Policies with Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 358-377, November.
    5. Hyeng Keun Koo, 1998. "Consumption and Portfolio Selection with Labor Income: A Continuous Time Approach," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 49-65, January.
    6. Barro, Robert J, 1979. "On the Determination of the Public Debt," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 940-971, October.
    7. Adam, Klaus, 2011. "Government debt and optimal monetary and fiscal policy," European Economic Review, Elsevier, vol. 55(1), pages 57-74, January.
    8. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    9. Yoichi Kuwana, 1995. "Certainty Equivalence And Logarithmic Utilities In Consumption/Investment Problems," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 297-309, October.
    10. Zhuo Jin & G. Yin, 2013. "Numerical Methods for Optimal Dividend Payment and Investment Strategies of Markov-Modulated Jump Diffusion Models with Regular and Singular Controls," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 246-271, October.
    11. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2011. "Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs," European Journal of Operational Research, Elsevier, vol. 211(3), pages 568-576, June.
    12. Jarrow, Robert A., 2014. "Financial crises and economic growth," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 194-207.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    2. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    3. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    4. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    5. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    6. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    7. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    8. Ben S. Bernanke & Vincent R. Reinhart & Brian P. Sack, 2004. "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 35(2), pages 1-100.
    9. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    10. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    11. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    12. Nowman, K. Ben & Sorwar, Ghulam, 2005. "Derivative prices from interest rate models: results for Canada, Hong Kong, and United States," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 428-438.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    15. Peter Carr & Liuren Wu, 2023. "Decomposing Long Bond Returns: A Decentralized Theory," Review of Finance, European Finance Association, vol. 27(3), pages 997-1026.
    16. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    17. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    18. Hurn, A.S. & Lindsay, K.A., 1999. "Estimating the parameters of stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 373-384.
    19. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    20. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:166:y:2015:i:3:d:10.1007_s10957-014-0629-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.