A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-014-0645-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Samir Adly & Hadia Rammal, 2013. "A new method for solving Pareto eigenvalue complementarity problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 703-731, July.
- Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dezhou Kong & Lishan Liu & Yonghong Wu, 2017. "Isotonicity of the Metric Projection by Lorentz Cone and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 117-130, April.
- Masao Fukushima & Joaquim Júdice & Welington Oliveira & Valentina Sessa, 2020. "A sequential partial linearization algorithm for the symmetric eigenvalue complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 711-728, December.
- Brás, Carmo P. & Fischer, Andreas & Júdice, Joaquim J. & Schönefeld, Klaus & Seifert, Sarah, 2017. "A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 36-48.
- Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
- Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
- Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
- Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
- J. Sun & L. W. Zhang & Y. Wu, 2006. "Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 437-456, June.
- Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
- Yun Wang & Liwei Zhang, 2009. "Properties of equation reformulation of the Karush–Kuhn–Tucker condition for nonlinear second order cone optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 195-218, October.
- Jia Wu & Yi Zhang & Liwei Zhang & Yue Lu, 2016. "A Sequential Convex Program Approach to an Inverse Linear Semidefinite Programming Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-26, August.
- Yingnan Wang & Naihua Xiu, 2011. "Strong Semismoothness of Projection onto Slices of Second-Order Cone," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 599-614, September.
- Chen Ling & Hongjin He & Liqun Qi, 2016. "On the cone eigenvalue complementarity problem for higher-order tensors," Computational Optimization and Applications, Springer, vol. 63(1), pages 143-168, January.
- Youyicun Lin & Shenglong Hu, 2022. "$${\text {B}}$$ B -Subdifferential of the Projection onto the Generalized Spectraplex," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 702-724, February.
- Shenglong Hu & Guoyin Li, 2021. "$${\text {B}}$$ B -subdifferentials of the projection onto the matrix simplex," Computational Optimization and Applications, Springer, vol. 80(3), pages 915-941, December.
- Pinto da Costa, A. & Seeger, A. & Simões, F.M.F., 2017. "Complementarity eigenvalue problems for nonlinear matrix pencils," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 134-148.
- Nooshin Movahedian, 2014. "Nonsmooth Calculus of Semismooth Functions and Maps," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 415-438, February.
- Y. J. Liu & L. W. Zhang, 2008. "Convergence of the Augmented Lagrangian Method for Nonlinear Optimization Problems over Second-Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 557-575, December.
- Fatemeh Abdi & Fatemeh Shakeri, 2017. "A New Descent Method for Symmetric Non-monotone Variational Inequalities with Application to Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 923-940, June.
- Jianzhong Zhang & Liwei Zhang & Xiantao Xiao, 2010. "A Perturbation approach for an inverse quadratic programming problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 379-404, December.
- Aiqun Huang & Chengxian Xu, 2013. "A trust region method for solving semidefinite programs," Computational Optimization and Applications, Springer, vol. 55(1), pages 49-71, May.
- Chen Ling & Hongjin He & Liqun Qi, 2016. "Higher-degree eigenvalue complementarity problems for tensors," Computational Optimization and Applications, Springer, vol. 64(1), pages 149-176, May.
More about this item
Keywords
Lorentz cone; Second-order cone eigenvalue complementarity problem; Semismooth Newton method; Lattice Projection Method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:165:y:2015:i:2:d:10.1007_s10957-014-0645-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.