IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v55y2013i1p49-71.html
   My bibliography  Save this article

A trust region method for solving semidefinite programs

Author

Listed:
  • Aiqun Huang
  • Chengxian Xu

Abstract

When using interior point methods for solving semidefinite programs (SDP), one needs to solve a system of linear equations at each iteration. For problems of large size, solving the system of linear equations can be very expensive. In this paper, we propose a trust region algorithm for solving SDP problems. At each iteration we perform a number of conjugate gradient iterations, but do not need to solve a system of linear equations. Under mild assumptions, the convergence of this algorithm is established. Numerical examples are given to illustrate the convergence results obtained. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Aiqun Huang & Chengxian Xu, 2013. "A trust region method for solving semidefinite programs," Computational Optimization and Applications, Springer, vol. 55(1), pages 49-71, May.
  • Handle: RePEc:spr:coopap:v:55:y:2013:i:1:p:49-71
    DOI: 10.1007/s10589-012-9514-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9514-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9514-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Defeng Sun & Jie Sun, 2002. "Semismooth Matrix-Valued Functions," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 150-169, February.
    2. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
    2. Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
    3. Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
    4. J. Sun & L. W. Zhang & Y. Wu, 2006. "Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 437-456, June.
    5. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    6. Youyicun Lin & Shenglong Hu, 2022. "$${\text {B}}$$ B -Subdifferential of the Projection onto the Generalized Spectraplex," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 702-724, February.
    7. Shenglong Hu & Guoyin Li, 2021. "$${\text {B}}$$ B -subdifferentials of the projection onto the matrix simplex," Computational Optimization and Applications, Springer, vol. 80(3), pages 915-941, December.
    8. Jianzhong Zhang & Liwei Zhang & Xiantao Xiao, 2010. "A Perturbation approach for an inverse quadratic programming problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 379-404, December.
    9. M. L. Flegel & C. Kanzow, 2007. "Equivalence of Two Nondegeneracy Conditions for Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 381-397, December.
    10. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    11. Sangho Kum & Yongdo Lim, 2010. "Penalized complementarity functions on symmetric cones," Journal of Global Optimization, Springer, vol. 46(3), pages 475-485, March.
    12. Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
    13. Chengjin Li, 2014. "A New Approximation of the Matrix Rank Function and Its Application to Matrix Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 569-594, November.
    14. Samir Adly & Hadia Rammal, 2015. "A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 563-585, May.
    15. Qingna Li & Donghui Li & Houduo Qi, 2010. "Newton’s Method for Computing the Nearest Correlation Matrix with a Simple Upper Bound," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 546-568, December.
    16. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
    17. Yun Wang & Liwei Zhang, 2009. "Properties of equation reformulation of the Karush–Kuhn–Tucker condition for nonlinear second order cone optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 195-218, October.
    18. Jia Wu & Yi Zhang & Liwei Zhang & Yue Lu, 2016. "A Sequential Convex Program Approach to an Inverse Linear Semidefinite Programming Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-26, August.
    19. Yingnan Wang & Naihua Xiu, 2011. "Strong Semismoothness of Projection onto Slices of Second-Order Cone," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 599-614, September.
    20. Maxim Bouev & Ilia Manaev & Aleksei Minabutdinov, 2013. "Finding the Nearest Valid Covariance Matrix: An FX Market Case," EUSP Department of Economics Working Paper Series Ec-07/13, European University at St. Petersburg, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:55:y:2013:i:1:p:49-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.