IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v163y2014i2d10.1007_s10957-014-0536-4.html
   My bibliography  Save this article

On a Smooth Dual Gap Function for a Class of Quasi-Variational Inequalities

Author

Listed:
  • Nadja Harms

    (University of Würzburg)

  • Tim Hoheisel

    (University of Würzburg)

  • Christian Kanzow

    (University of Würzburg)

Abstract

A well-known technique for the solution of quasi-variational inequalities (QVIs) consists in the reformulation of this problem as a constrained or unconstrained optimization problem by means of so-called gap functions. In contrast to standard variational inequalities, however, these gap functions turn out to be nonsmooth in general. Here, it is shown that one can obtain an unconstrained optimization reformulation of a class of QVIs with affine operator by using a continuously differentiable dual gap function. This extends an idea from Dietrich (J. Math. Anal. Appl. 235:380–393 [24]). Some numerical results illustrate the practical behavior of this dual gap function approach.

Suggested Citation

  • Nadja Harms & Tim Hoheisel & Christian Kanzow, 2014. "On a Smooth Dual Gap Function for a Class of Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 413-438, November.
  • Handle: RePEc:spr:joptap:v:163:y:2014:i:2:d:10.1007_s10957-014-0536-4
    DOI: 10.1007/s10957-014-0536-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0536-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0536-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Chan & J. S. Pang, 1982. "The Generalized Quasi-Variational Inequality Problem," Mathematics of Operations Research, INFORMS, vol. 7(2), pages 211-222, May.
    2. NESTEROV, Yu. & SCRIMALI, Laura, 2006. "Solving strongly monotone variational and quasi-variational inequalities," LIDAM Discussion Papers CORE 2006107, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    4. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    5. R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
    6. D. Aussel & R. Correa & M. Marechal, 2011. "Gap Functions for Quasivariational Inequalities and Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 474-488, December.
    7. Jong-Shi Pang & Masao Fukushima, 2009. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 6(3), pages 373-375, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vittorio Latorre & Simone Sagratella, 2016. "A canonical duality approach for the solution of affine quasi-variational inequalities," Journal of Global Optimization, Springer, vol. 64(3), pages 433-449, March.
    2. Francisco Facchinei & Christian Kanzow & Sebastian Karl & Simone Sagratella, 2015. "The semismooth Newton method for the solution of quasi-variational inequalities," Computational Optimization and Applications, Springer, vol. 62(1), pages 85-109, September.
    3. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    4. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    5. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    6. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    7. Han, Deren & Zhang, Hongchao & Qian, Gang & Xu, Lingling, 2012. "An improved two-step method for solving generalized Nash equilibrium problems," European Journal of Operational Research, Elsevier, vol. 216(3), pages 613-623.
    8. Ming Hu & Masao Fukushima, 2012. "Smoothing approach to Nash equilibrium formulations for a class of equilibrium problems with shared complementarity constraints," Computational Optimization and Applications, Springer, vol. 52(2), pages 415-437, June.
    9. Addis Belete Zewde & Semu Mitiku Kassa, 2021. "Multilevel multi-leader multiple-follower games with nonseparable objectives and shared constraints," Computational Management Science, Springer, vol. 18(4), pages 455-475, October.
    10. SCRIMALI, Laura, 2006. "A quasi-variational inequality approach to the financial equilibrium problem," LIDAM Discussion Papers CORE 2006108, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Igor Konnov, 2021. "Variational Inequality Type Formulations of General Market Equilibrium Problems with Local Information," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 332-355, February.
    12. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    13. Axel Dreves & Anna Heusinger & Christian Kanzow & Masao Fukushima, 2013. "A globalized Newton method for the computation of normalized Nash equilibria," Journal of Global Optimization, Springer, vol. 56(2), pages 327-340, June.
    14. Francisco Facchinei & Jong-Shi Pang & Gesualdo Scutari, 2014. "Non-cooperative games with minmax objectives," Computational Optimization and Applications, Springer, vol. 59(1), pages 85-112, October.
    15. Jean Strodiot & Thi Nguyen & Van Nguyen, 2013. "A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 56(2), pages 373-397, June.
    16. Frank Lenzen & Florian Becker & Jan Lellmann & Stefania Petra & Christoph Schnörr, 2013. "A class of quasi-variational inequalities for adaptive image denoising and decomposition," Computational Optimization and Applications, Springer, vol. 54(2), pages 371-398, March.
    17. Flam, Sjur & Ruszczynski, A., 2006. "Computing Normalized Equilibria in Convex-Concave Games," Working Papers 2006:9, Lund University, Department of Economics.
    18. Massimo Pappalardo & Giandomenico Mastroeni & Mauro Passacantando, 2016. "Merit functions: a bridge between optimization and equilibria," Annals of Operations Research, Springer, vol. 240(1), pages 271-299, May.
    19. Axel Dreves, 2016. "Improved error bound and a hybrid method for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 65(2), pages 431-448, November.
    20. Axel Dreves & Francisco Facchinei & Andreas Fischer & Markus Herrich, 2014. "A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application," Computational Optimization and Applications, Springer, vol. 59(1), pages 63-84, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:163:y:2014:i:2:d:10.1007_s10957-014-0536-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.