IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v158y2013i2d10.1007_s10957-012-0213-4.html
   My bibliography  Save this article

On the Strong Convergence of Halpern Type Proximal Point Algorithm

Author

Listed:
  • Hadi Khatibzadeh

    (University of Zanjan)

  • Sajad Ranjbar

    (University of Zanjan)

Abstract

The main result of this paper is to prove the strong convergence of the sequence generated by the proximal point algorithm of Halpern type to a zero of a maximal monotone operator under the suitable assumptions on the parameters and error. The results extend some of the previous results or give some different conditions for convergence of the sequence. It is also indicated that when the maximal monotone operator is the subdifferential of a convex, proper, and lower semicontinuous function, the results extend all previous results in the literature. We also prove the boundedness of the sequence generated by the algorithm with a weak coercivity condition defined in the paper and without any additional assumptions on the parameters.

Suggested Citation

  • Hadi Khatibzadeh & Sajad Ranjbar, 2013. "On the Strong Convergence of Halpern Type Proximal Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 385-396, August.
  • Handle: RePEc:spr:joptap:v:158:y:2013:i:2:d:10.1007_s10957-012-0213-4
    DOI: 10.1007/s10957-012-0213-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0213-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0213-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Boikanyo & G. Moroşanu, 2011. "Inexact Halpern-type proximal point algorithm," Journal of Global Optimization, Springer, vol. 51(1), pages 11-26, September.
    2. Hadi Khatibzadeh, 2012. "Some Remarks on the Proximal Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 769-778, June.
    3. B. Djafari Rouhani & H. Khatibzadeh, 2008. "On the Proximal Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 411-417, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Dadashi & Mihai Postolache, 2017. "Hybrid Proximal Point Algorithm and Applications to Equilibrium Problems and Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 518-529, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahid Dadashi & Mihai Postolache, 2017. "Hybrid Proximal Point Algorithm and Applications to Equilibrium Problems and Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 518-529, August.
    2. Laurenţiu Leuştean & Pedro Pinto, 2021. "Quantitative results on a Halpern-type proximal point algorithm," Computational Optimization and Applications, Springer, vol. 79(1), pages 101-125, May.
    3. Behzad Djafari Rouhani & Sirous Moradi, 2019. "Strong Convergence of Regularized New Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 864-882, June.
    4. J. H. Wang & C. Li & J.-C. Yao, 2015. "Finite Termination of Inexact Proximal Point Algorithms in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 188-212, July.
    5. Hadi Khatibzadeh, 2012. "Some Remarks on the Proximal Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 769-778, June.
    6. Behzad Djafari Rouhani & Sirous Moradi, 2017. "Strong Convergence of Two Proximal Point Algorithms with Possible Unbounded Error Sequences," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 222-235, January.
    7. Fenghui Wang & Huanhuan Cui, 2012. "On the contraction-proximal point algorithms with multi-parameters," Journal of Global Optimization, Springer, vol. 54(3), pages 485-491, November.
    8. Haibin Zhang & Juan Wei & Meixia Li & Jie Zhou & Miantao Chao, 2014. "On proximal gradient method for the convex problems regularized with the group reproducing kernel norm," Journal of Global Optimization, Springer, vol. 58(1), pages 169-188, January.
    9. Behzad Djafari Rouhani & Vahid Mohebbi, 2020. "Strong Convergence of an Inexact Proximal Point Algorithm in a Banach Space," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 134-147, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:158:y:2013:i:2:d:10.1007_s10957-012-0213-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.