IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v186y2020i1d10.1007_s10957-020-01695-w.html
   My bibliography  Save this article

Strong Convergence of an Inexact Proximal Point Algorithm in a Banach Space

Author

Listed:
  • Behzad Djafari Rouhani

    (University of Texas at El Paso)

  • Vahid Mohebbi

    (University of Texas at El Paso)

Abstract

By using our own approach, we study the strong convergence of an inexact proximal point algorithm with possible unbounded errors for a maximal monotone operator in a Banach space. We give a necessary and sufficient condition for the zero set of the operator to be nonempty and show that, in this case, this iterative sequence converges strongly to a zero of the operator. We present also some applications of our results to equilibrium problems and optimization. Our proximal point algorithm contains, as a special case, the one considered in Hilbert space by Djafari Rouhani and Moradi in (J Optim Theory Appl 172:222–235, 2017) and solves the open problem of extending it to a Banach space, which was stated in that paper and in Djafari Rouhani and Moradi in (J Optim Theory Appl 181:864–882, 2019) . Since the nonexpansiveness of the resolvent operator, which holds in Hilbert space, is not valid anymore in Banach space, our results require new methods of proofs, and significantly improve upon the previous results, both in theory and in applications.

Suggested Citation

  • Behzad Djafari Rouhani & Vahid Mohebbi, 2020. "Strong Convergence of an Inexact Proximal Point Algorithm in a Banach Space," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 134-147, July.
  • Handle: RePEc:spr:joptap:v:186:y:2020:i:1:d:10.1007_s10957-020-01695-w
    DOI: 10.1007/s10957-020-01695-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01695-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01695-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behzad Djafari Rouhani & Sirous Moradi, 2019. "Strong Convergence of Regularized New Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 864-882, June.
    2. B. Djafari Rouhani & H. Khatibzadeh, 2008. "On the Proximal Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 411-417, May.
    3. Behzad Djafari Rouhani & Sirous Moradi, 2017. "Strong Convergence of Two Proximal Point Algorithms with Possible Unbounded Error Sequences," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 222-235, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behzad Djafari Rouhani & Sirous Moradi, 2019. "Strong Convergence of Regularized New Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 864-882, June.
    2. Gheorghe Moroşanu & Adrian Petruşel, 2019. "A Proximal Point Algorithm Revisited and Extended," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1120-1129, September.
    3. Hadi Khatibzadeh, 2012. "Some Remarks on the Proximal Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 769-778, June.
    4. Hadi Khatibzadeh & Sajad Ranjbar, 2013. "On the Strong Convergence of Halpern Type Proximal Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 385-396, August.
    5. Behzad Djafari Rouhani & Sirous Moradi, 2017. "Strong Convergence of Two Proximal Point Algorithms with Possible Unbounded Error Sequences," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 222-235, January.
    6. Vahid Dadashi & Mihai Postolache, 2017. "Hybrid Proximal Point Algorithm and Applications to Equilibrium Problems and Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 518-529, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:186:y:2020:i:1:d:10.1007_s10957-020-01695-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.