IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v151y2011i1d10.1007_s10957-011-9873-8.html
   My bibliography  Save this article

Local Linear Convergence of an Outer Approximation Projection Method for Variational Inequalities

Author

Listed:
  • Shu Lu

    (University of North Carolina at Chapel Hill)

  • Sudhanshu Singh

    (University of North Carolina at Chapel Hill)

Abstract

This paper considers an outer approximation projection method for variational inequalities, in which the projections are not performed on the original set that appears in the variational inequality, but on a polyhedral convex set defined by the linearized constraints. It shows that the method converges linearly, when the starting point is sufficiently close to the solution and the step lengths are sufficiently small.

Suggested Citation

  • Shu Lu & Sudhanshu Singh, 2011. "Local Linear Convergence of an Outer Approximation Projection Method for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 52-63, October.
  • Handle: RePEc:spr:joptap:v:151:y:2011:i:1:d:10.1007_s10957-011-9873-8
    DOI: 10.1007/s10957-011-9873-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-011-9873-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-011-9873-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    2. Stephen M. Robinson, 1991. "An Implicit-Function Theorem for a Class of Nonsmooth Functions," Mathematics of Operations Research, INFORMS, vol. 16(2), pages 292-309, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
    2. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
    3. Shu Lu & Stephen M. Robinson, 2008. "Variational Inequalities over Perturbed Polyhedral Convex Sets," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 689-711, August.
    4. Wu Li & Ivan Singer, 1998. "Global Error Bounds for Convex Multifunctions and Applications," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 443-462, May.
    5. Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
    6. M. Durea & R. Strugariu, 2011. "On parametric vector optimization via metric regularity of constraint systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 409-425, December.
    7. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    8. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    9. Francisco Aragón Artacho & Boris Mordukhovich, 2011. "Enhanced metric regularity and Lipschitzian properties of variational systems," Journal of Global Optimization, Springer, vol. 50(1), pages 145-167, May.
    10. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    11. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    12. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    13. Nguyen Qui, 2014. "Stability for trust-region methods via generalized differentiation," Journal of Global Optimization, Springer, vol. 59(1), pages 139-164, May.
    14. Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
    15. U. Felgenhauer, 1999. "Regularity Properties of Optimal Controls with Application to Discrete Approximation," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 97-110, July.
    16. Ilker Birbil, S. & Gürkan, G. & Listes, O.L., 2004. "Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints : Sample-Path Analysis," Discussion Paper 2004-25, Tilburg University, Center for Economic Research.
    17. Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
    18. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    19. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    20. J. V. Outrata, 1999. "Optimality Conditions for a Class of Mathematical Programs with Equilibrium Constraints," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 627-644, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:151:y:2011:i:1:d:10.1007_s10957-011-9873-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.