IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v143y2009i3d10.1007_s10957-009-9566-8.html
   My bibliography  Save this article

Interior-Point Lagrangian Decomposition Method for Separable Convex Optimization

Author

Listed:
  • I. Necoara

    (University Politehnica Bucharest
    Katholieke Universiteit Leuven)

  • J. A. K. Suykens

    (Katholieke Universiteit Leuven)

Abstract

In this paper, we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian, we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newton method for tracing the central path. We show that the new algorithm is globally convergent and highly parallelizable and thus it is suitable for solving large-scale separable convex problems.

Suggested Citation

  • I. Necoara & J. A. K. Suykens, 2009. "Interior-Point Lagrangian Decomposition Method for Separable Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 143(3), pages 567-588, December.
  • Handle: RePEc:spr:joptap:v:143:y:2009:i:3:d:10.1007_s10957-009-9566-8
    DOI: 10.1007/s10957-009-9566-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9566-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9566-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Hegland & M.R. Osborne & J. Sun, 2001. "Parallel Interior Point Schemes for Solving Multistage Convex Programming," Annals of Operations Research, Springer, vol. 108(1), pages 75-85, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jueyou Li & Guo Chen & Zhaoyang Dong & Zhiyou Wu, 2016. "A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints," Computational Optimization and Applications, Springer, vol. 64(3), pages 671-697, July.
    2. Deyi Liu & Quoc Tran-Dinh, 2020. "An Inexact Interior-Point Lagrangian Decomposition Algorithm with Inexact Oracles," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 903-926, June.
    3. Quoc Tran Dinh & Ion Necoara & Moritz Diehl, 2014. "Path-following gradient-based decomposition algorithms for separable convex optimization," Journal of Global Optimization, Springer, vol. 59(1), pages 59-80, May.
    4. Da Tian, 2015. "An exterior point polynomial-time algorithm for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 61(1), pages 51-78, May.
    5. Bingfeng Bai & Wei Fan, 2023. "Research on strategic liner ship fleet planning with regard to hub-and-spoke network," Operations Management Research, Springer, vol. 16(1), pages 363-376, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:143:y:2009:i:3:d:10.1007_s10957-009-9566-8. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.