IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i1p59-80.html
   My bibliography  Save this article

Path-following gradient-based decomposition algorithms for separable convex optimization

Author

Listed:
  • Quoc Tran Dinh
  • Ion Necoara
  • Moritz Diehl

Abstract

A new decomposition optimization algorithm, called path-following gradient-based decomposition, is proposed to solve separable convex optimization problems. Unlike path-following Newton methods considered in the literature, this algorithm does not require any smoothness assumption on the objective function. This allows us to handle more general classes of problems arising in many real applications than in the path-following Newton methods. The new algorithm is a combination of three techniques, namely smoothing, Lagrangian decomposition and path-following gradient framework. The algorithm decomposes the original problem into smaller subproblems by using dual decomposition and smoothing via self-concordant barriers, updates the dual variables using a path-following gradient method and allows one to solve the subproblems in parallel. Moreover, compared to augmented Lagrangian approaches, our algorithmic parameters are updated automatically without any tuning strategy. We prove the global convergence of the new algorithm and analyze its convergence rate. Then, we modify the proposed algorithm by applying Nesterov’s accelerating scheme to get a new variant which has a better convergence rate than the first algorithm. Finally, we present preliminary numerical tests that confirm the theoretical development. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Quoc Tran Dinh & Ion Necoara & Moritz Diehl, 2014. "Path-following gradient-based decomposition algorithms for separable convex optimization," Journal of Global Optimization, Springer, vol. 59(1), pages 59-80, May.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:1:p:59-80
    DOI: 10.1007/s10898-013-0085-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0085-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0085-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. Necoara & J. A. K. Suykens, 2009. "Interior-Point Lagrangian Decomposition Method for Separable Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 143(3), pages 567-588, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Tian, 2015. "An exterior point polynomial-time algorithm for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 61(1), pages 51-78, May.
    2. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    3. Frank E. Curtis & Arvind U. Raghunathan, 2017. "Solving nearly-separable quadratic optimization problems as nonsmooth equations," Computational Optimization and Applications, Springer, vol. 67(2), pages 317-360, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deyi Liu & Quoc Tran-Dinh, 2020. "An Inexact Interior-Point Lagrangian Decomposition Algorithm with Inexact Oracles," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 903-926, June.
    2. Bingfeng Bai & Wei Fan, 2023. "Research on strategic liner ship fleet planning with regard to hub-and-spoke network," Operations Management Research, Springer, vol. 16(1), pages 363-376, March.
    3. Da Tian, 2015. "An exterior point polynomial-time algorithm for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 61(1), pages 51-78, May.
    4. Jueyou Li & Guo Chen & Zhaoyang Dong & Zhiyou Wu, 2016. "A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints," Computational Optimization and Applications, Springer, vol. 64(3), pages 671-697, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:1:p:59-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.