Complexity Results for Some Global Optimization Problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-008-9448-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
- de Klerk, E. & Laurent, M. & Parrilo, P., 2006. "A PTAS for the minimization of polynomials of fixed degree over the simplex," Other publications TiSEM 603897c9-179e-43e4-9e83-6, Tilburg University, School of Economics and Management.
- de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Other publications TiSEM 88640b6d-5240-472d-8669-4, Tilburg University, School of Economics and Management.
- NESTEROV, Yu, 2003. "Random walk in a simplex and quadratic optimization over convex polytopes," LIDAM Discussion Papers CORE 2003071, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ke Hou & Anthony Man-Cho So, 2014. "Hardness and Approximation Results for L p -Ball Constrained Homogeneous Polynomial Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1084-1108, November.
- de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
- Immanuel Bomze & Stefan Gollowitzer & E. Yıldırım, 2014. "Rounding on the standard simplex: regular grids for global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 243-258, July.
- Marco Locatelli, 2013. "Approximation algorithm for a class of global optimization problems," Journal of Global Optimization, Springer, vol. 55(1), pages 13-25, January.
- de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Other publications TiSEM f63bfe23-904e-4d7a-8677-8, Tilburg University, School of Economics and Management.
- Burgdorf, S. & Laurent, Monique & Piovesan, Teresa, 2017. "On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings," Other publications TiSEM fabb1d61-6395-4123-9174-b, Tilburg University, School of Economics and Management.
- Maziar Salahi, 2010. "Convex optimization approach to a single quadratically constrained quadratic minimization problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 181-187, June.
- Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
- Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
- Qingsong Tang & Xiangde Zhang & Guoren Wang & Cheng Zhao, 2018. "A continuous characterization of the maximum vertex-weighted clique in hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1250-1260, May.
- de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
- Roland Hildebrand, 2022. "Semi-definite Representations for Sets of Cubics on the Two-dimensional Sphere," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 666-675, November.
- de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Other publications TiSEM 88640b6d-5240-472d-8669-4, Tilburg University, School of Economics and Management.
- Amir Ali Ahmadi & Georgina Hall, 2019. "On the Construction of Converging Hierarchies for Polynomial Optimization Based on Certificates of Global Positivity," Management Science, INFORMS, vol. 44(4), pages 1192-1207, November.
- Bo Jiang & Simai He & Zhening Li & Shuzhong Zhang, 2014. "Moments Tensors, Hilbert's Identity, and k -wise Uncorrelated Random Variables," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 775-788, August.
- W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
- Etienne de Klerk & Jean B. Lasserre & Monique Laurent & Zhao Sun, 2017. "Bound-Constrained Polynomial Optimization Using Only Elementary Calculations," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 834-853, August.
- de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
- Muhammad Faisal Iqbal & Faizan Ahmed, 2022. "Approximation Hierarchies for the Copositive Tensor Cone and Their Application to the Polynomial Optimization over the Simplex," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
More about this item
Keywords
Global optimization; Complexity; Approximation problems; Separable functions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:140:y:2009:i:1:d:10.1007_s10957-008-9448-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.