IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v28y1980i4p1005-1011.html
   My bibliography  Save this article

Technical Note—Duality Theory for Generalized Linear Programs with Computational Methods

Author

Listed:
  • David J. Thuente

    (Indiana University-Purdue University, Fort Wayne, Indiana)

Abstract

This paper presents a duality theory for generalized linear programs which parallels the usual duality results for linear programming. The duals are a form of inexact linear programs and can be solved by the simplex method. Computational methods with examples and applications are given.

Suggested Citation

  • David J. Thuente, 1980. "Technical Note—Duality Theory for Generalized Linear Programs with Computational Methods," Operations Research, INFORMS, vol. 28(4), pages 1005-1011, August.
  • Handle: RePEc:inm:oropre:v:28:y:1980:i:4:p:1005-1011
    DOI: 10.1287/opre.28.4.1005
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.28.4.1005
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.28.4.1005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. K. Bhurjee & G. Panda, 2016. "Sufficient optimality conditions and duality theory for interval optimization problem," Annals of Operations Research, Springer, vol. 243(1), pages 335-348, August.
    2. H. C. Wu, 2010. "Duality Theory for Optimization Problems with Interval-Valued Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 615-628, March.
    3. H. C. Wu, 2008. "Wolfe Duality for Interval-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 138(3), pages 497-509, September.
    4. Gorissen, B.L. & Ben-Tal, A. & Blanc, J.P.C. & den Hertog, D., 2012. "A New Method for Deriving Robust and Globalized Robust Solutions of Uncertain Linear Conic Optimization Problems Having General Convex Uncertainty Sets," Discussion Paper 2012-076, Tilburg University, Center for Economic Research.
    5. Hsien-Chung Wu, 2011. "Duality Theory in Interval-Valued Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 298-316, August.
    6. Robin Vujanic & Paul Goulart & Manfred Morari, 2016. "Robust Optimization of Schedules Affected by Uncertain Events," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 1033-1054, December.
    7. Soyster, A.L. & Murphy, F.H., 2017. "Data driven matrix uncertainty for robust linear programming," Omega, Elsevier, vol. 70(C), pages 43-57.
    8. Gorissen, B.L., 2014. "Practical robust optimization techniques and improved inverse planning of HDR brachytherapy," Other publications TiSEM 931e020a-2486-4e12-9731-3, Tilburg University, School of Economics and Management.
    9. Soyster, A.L. & Murphy, F.H., 2013. "A unifying framework for duality and modeling in robust linear programs," Omega, Elsevier, vol. 41(6), pages 984-997.
    10. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    11. Jaroslav Ramík & Milan Vlach, 2016. "Intuitionistic fuzzy linear programming and duality: a level sets approach," Fuzzy Optimization and Decision Making, Springer, vol. 15(4), pages 457-489, December.
    12. Bram L. Gorissen & Hans Blanc & Dick den Hertog & Aharon Ben-Tal, 2014. "Technical Note---Deriving Robust and Globalized Robust Solutions of Uncertain Linear Programs with General Convex Uncertainty Sets," Operations Research, INFORMS, vol. 62(3), pages 672-679, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:28:y:1980:i:4:p:1005-1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.