IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v108y2001i3d10.1023_a1017591509792.html
   My bibliography  Save this article

Complexity of the Gravitational Method for Linear Programming

Author

Listed:
  • T. L. Morin

    (Purdue University)

  • N. Prabhu

    (Purdue University)

  • Z. Zhang

    (Purdue University)

Abstract

In the gravitational method for linear programming, a particle is dropped from an interior point of the polyhedron and is allowed to move under the influence of a gravitational field parallel to the objective function direction. Once the particle falls onto the boundary of the polyhedron, its subsequent motion is constrained to be on the surface of the polyhedron with the particle moving along the steepest-descent feasible direction at any instant. Since an optimal vertex minimizes the gravitational potential, computing the trajectory of the particle yields an optimal solution to the linear program. Since the particle is not constrained to move along the edges of the polyhedron, as the simplex method does, the gravitational method seemed to have the promise of being theoretically more efficient than the simplex method. In this paper, we first show that, if the particle has zero diameter, then the worst-case time complexity of the gravitational method is exponential in the size of the input linear program. As a simple corollary of the preceding result, it follows that, even when the particle has a fixed nonzero diameter, the gravitational method has exponential time complexity. The complexity of the version of the gravitational method in which the particle diameter decreases as the algorithm progresses remains an open question.

Suggested Citation

  • T. L. Morin & N. Prabhu & Z. Zhang, 2001. "Complexity of the Gravitational Method for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 108(3), pages 633-658, March.
  • Handle: RePEc:spr:joptap:v:108:y:2001:i:3:d:10.1023_a:1017591509792
    DOI: 10.1023/A:1017591509792
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1017591509792
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1017591509792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ron Shamir, 1987. "The Efficiency of the Simplex Method: A Survey," Management Science, INFORMS, vol. 33(3), pages 301-334, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
    2. Syed Inayatullah & Nasir Touheed & Muhammad Imtiaz, 2015. "A Streamlined Artificial Variable Free Version of Simplex Method," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-28, March.
    3. Bahman Kalantari, 2015. "A characterization theorem and an algorithm for a convex hull problem," Annals of Operations Research, Springer, vol. 226(1), pages 301-349, March.
    4. Drexl, Andreas & Kimms, Alf, 1998. "Optimization guided lower and upper bounds for the resource investment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 481, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Ordónez, Fernando & Freund, Robert M., 2003. "Computational Experience and the Explanatory Value of Condition Numbers for Linear Optimization," Working papers 4337-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:108:y:2001:i:3:d:10.1023_a:1017591509792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.