IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v105y2000i1d10.1023_a1004618113022.html
   My bibliography  Save this article

Existence of Equilibrium in Generalized Games with Abstract Convexity Structure

Author

Listed:
  • J. V. Llinares

    (Universidad de Murcia)

Abstract

The aim of this paper is to prove the existence of equilibrium for generalized games or abstract economies in contexts where the convexity conditions on strategy spaces and preference correspondences are relaxed and an arbitrary number of agents is considered. The results are based on a fixed-point theorem in which the convexity condition on sets and images of correspondences is replaced by a general notion of abstract convexity, called mc-spaces, generalizing the notions of simplicial convexity, H-spaces, and G-convex spaces.

Suggested Citation

  • J. V. Llinares, 2000. "Existence of Equilibrium in Generalized Games with Abstract Convexity Structure," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 149-160, April.
  • Handle: RePEc:spr:joptap:v:105:y:2000:i:1:d:10.1023_a:1004618113022
    DOI: 10.1023/A:1004618113022
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1004618113022
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1004618113022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
    2. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    3. Tarafdar, E., 1991. "A fixed point theorem and equilibrium point of an abstract economy," Journal of Mathematical Economics, Elsevier, vol. 20(2), pages 211-218.
    4. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 345-348, December.
    5. Llinarès, Juan Vicente, 1998. "Abstract convexity, some relations and applications," CEPREMAP Working Papers (Couverture Orange) 9803, CEPREMAP.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llinarès, Juan Vicente, 1998. "Existence of equilibrium in generalized games with non-convex strategy spaces," CEPREMAP Working Papers (Couverture Orange) 9801, CEPREMAP.
    2. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    3. Basci, Erdem & Sertel, Murat R., 1996. "Prakash and Sertel's theory of non-cooperative equilibria in social systems -- twenty years later," Journal of Mathematical Economics, Elsevier, vol. 25(1), pages 1-18.
    4. Khan, M. Ali & McLean, Richard P. & Uyanik, Metin, 2024. "On constrained generalized games with action sets in non-locally-convex and non-Hausdorff topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    5. Alcantud, J.C.R., 2008. "Mixed choice structures, with applications to binary and non-binary optimization," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 242-250, February.
    6. Monica Patriche, 2013. "Fixed Point and Equilibrium Theorems in a Generalized Convexity Framework," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 701-715, March.
    7. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    8. Z. Yang & Y. J. Pu, 2011. "Essential Stability of Solutions for Maximal Element Theorem with Applications," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 284-297, August.
    9. Yang, Zhe & Yuan, George Xianzhi, 2019. "Some generalizations of Zhao’s theorem: Hybrid solutions and weak hybrid solutions for games with nonordered preferences," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 94-100.
    10. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    11. Yves Balasko & Mich Tvede, 2010. "General equilibrium without utility functions: how far to go?," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 201-225, October.
    12. John Duggan, 2011. "General Conditions for Existence of Maximal Elements via the Uncovered Set," RCER Working Papers 563, University of Rochester - Center for Economic Research (RCER).
    13. Balder, Erik J., 2008. "More on equilibria in competitive markets with externalities and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 575-602, July.
    14. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    15. Anderson, Robert M. & Duanmu, Haosui & Khan, M. Ali & Uyanik, Metin, 2022. "On abstract economies with an arbitrary set of players and action sets in locally-convex topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    16. Hichem Ben-El-Mechaiekh & Philippe Bich & Monique Florenzano, 2009. "General equilibrium and fixed-point theory: a partial survey," PSE-Ecole d'économie de Paris (Postprint) hal-00755998, HAL.
    17. Tian, Guoqiang, 1994. "Generalized KKM theorem, minimax inequalities and their applications," MPRA Paper 41217, University Library of Munich, Germany.
    18. Jian Yang, 2023. "Nonatomic game with general preferences over returns," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 861-889, September.
    19. Lan Di & George X. Yuan & Tu Zeng, 2021. "The consensus equilibria of mining gap games related to the stability of Blockchain Ecosystems," The European Journal of Finance, Taylor & Francis Journals, vol. 27(4-5), pages 419-440, March.
    20. M. Carmen Sánchez & Juan-Vicente Llinares & Begoña Subiza, 2003. "A KKM-result and an application for binary and non-binary choice functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(1), pages 185-193, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:105:y:2000:i:1:d:10.1023_a:1004618113022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.