IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v103y1999i3d10.1023_a1021740209084.html
   My bibliography  Save this article

Optimal Control of Linear Time-Varying Systems via Haar Wavelets

Author

Listed:
  • C. H. Hsiao

    (National Central University)

  • W. J. Wang

    (National Central University)

Abstract

This paper introduces the application of Haar wavelets to the optimal control synthesis for linear time-varying systems. Based upon some useful properties of Haar wavelets, a special product matrix, a related coefficient matrix, and an operational matrix of backward integration are proposed to solve the adjoint equation of optimization. The results obtained by the proposed Haar approach are almost the same as those obtained by the conventional Riccati method.

Suggested Citation

  • C. H. Hsiao & W. J. Wang, 1999. "Optimal Control of Linear Time-Varying Systems via Haar Wavelets," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 641-655, December.
  • Handle: RePEc:spr:joptap:v:103:y:1999:i:3:d:10.1023_a:1021740209084
    DOI: 10.1023/A:1021740209084
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1021740209084
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1021740209084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsiao, Chun-Hui, 1997. "State analysis of linear time delayed systems via Haar wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(5), pages 457-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsiao, C.H., 2004. "Haar wavelet approach to linear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 561-567.
    2. Hsiao, Chun-Hui & Wang, Wen-June, 2001. "Haar wavelet approach to nonlinear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(6), pages 347-353.
    3. Monika Garg & Lillie Dewan, 2012. "Non-recursive Haar Connection Coefficients Based Approach for Linear Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 320-337, May.
    4. C. H. Hsiao & W. J. Wang, 1999. "State Analysis and Optimal Control of Time-Varying Discrete Systems via Haar Wavelets," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 623-640, December.
    5. Tian, Yongge & Herzberg, Agnes M., 2006. "A-minimax and D-minimax robust optimal designs for approximately linear Haar-wavelet models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2942-2951, June.
    6. R. Dai & J. E. Cochran, 2009. "Wavelet Collocation Method for Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 265-278, November.
    7. Hsiao, Chun-Hui, 2004. "Haar wavelet direct method for solving variational problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 569-585.
    8. T. Binder & L. Blank & W. Dahmen & W. Marquardt, 2001. "Iterative Algorithms for Multiscale State Estimation, Part 1: Concepts," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 501-527, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2022. "Bayes Synthesis of Linear Nonstationary Stochastic Systems by Wavelet Canonical Expansions," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    2. Mart Ratas & Jüri Majak & Andrus Salupere, 2021. "Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method," Mathematics, MDPI, vol. 9(21), pages 1-12, November.
    3. Hsiao, C.H., 2004. "Haar wavelet approach to linear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 561-567.
    4. Hsiao, Chun-Hui & Wang, Wen-June, 2001. "Haar wavelet approach to nonlinear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(6), pages 347-353.
    5. Bulut, Fatih & Oruç, Ömer & Esen, Alaattin, 2022. "Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 277-290.
    6. Hsiao, Chun-Hui, 2015. "A Haar wavelets method of solving differential equations characterizing the dynamics of a current collection system for an electric locomotive," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 928-935.
    7. Hsiao, Chun-Hui & Wang, Wen-June, 1999. "State analysis of time-varying singular nonlinear systems via Haar wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(1), pages 91-100.
    8. C. H. Hsiao & W. J. Wang, 1999. "State Analysis and Optimal Control of Time-Varying Discrete Systems via Haar Wavelets," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 623-640, December.
    9. Hsiao, Chun-Hui & Wang, Wen-June, 2000. "State analysis of time-varying singular bilinear systems via Haar wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 52(1), pages 11-20.
    10. Ahsan, Muhammad & Lei, Weidong & Bohner, Martin & Khan, Amir Ali, 2024. "A high-order multi-resolution wavelet method for nonlinear systems of differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 543-559.
    11. Amin, Rohul & Shah, Kamal & Asif, Muhammad & Khan, Imran, 2021. "A computational algorithm for the numerical solution of fractional order delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    12. Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2021. "Wavelet Modeling of Control Stochastic Systems at Complex Shock Disturbances," Mathematics, MDPI, vol. 9(20), pages 1-15, October.

    More about this item

    Keywords

    Optimal control; Haar wavelets;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:103:y:1999:i:3:d:10.1023_a:1021740209084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.