IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1517-d807379.html
   My bibliography  Save this article

Bayes Synthesis of Linear Nonstationary Stochastic Systems by Wavelet Canonical Expansions

Author

Listed:
  • Igor Sinitsyn

    (Federal Research Center “Computer Science and Control”, Russian Academy of Sciences (FRC CSC RAS), 119333 Moscow, Russia
    Moscow Aviation Institute, National Research University, 125993 Moscow, Russia)

  • Vladimir Sinitsyn

    (Federal Research Center “Computer Science and Control”, Russian Academy of Sciences (FRC CSC RAS), 119333 Moscow, Russia
    Moscow Aviation Institute, National Research University, 125993 Moscow, Russia)

  • Eduard Korepanov

    (Federal Research Center “Computer Science and Control”, Russian Academy of Sciences (FRC CSC RAS), 119333 Moscow, Russia)

  • Tatyana Konashenkova

    (Federal Research Center “Computer Science and Control”, Russian Academy of Sciences (FRC CSC RAS), 119333 Moscow, Russia)

Abstract

This article is devoted to analysis and optimization problems of stochastic systems based on wavelet canonical expansions. Basic new results: (i) for general Bayes criteria, a method of synthesized methodological support and a software tool for nonstationary normal (Gaussian) linear observable stochastic systems by Haar wavelet canonical expansions are presented; (ii) a method of synthesis of a linear optimal observable system for criterion of the maximal probability that a signal will not exceed a particular value in absolute magnitude is given. Applications: wavelet model building of essentially nonstationary stochastic processes and parameters calibration.

Suggested Citation

  • Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2022. "Bayes Synthesis of Linear Nonstationary Stochastic Systems by Wavelet Canonical Expansions," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1517-:d:807379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lepik, Ü., 2005. "Numerical solution of differential equations using Haar wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(2), pages 127-143.
    2. Hsiao, Chun-Hui, 1997. "State analysis of linear time delayed systems via Haar wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(5), pages 457-470.
    3. Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2021. "Wavelet Modeling of Control Stochastic Systems at Complex Shock Disturbances," Mathematics, MDPI, vol. 9(20), pages 1-15, October.
    4. Hsiao, C.H., 2004. "Haar wavelet approach to linear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 561-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Bakhtadze, 2023. "Preface to the Special Issue on “Identification, Knowledge Engineering and Digital Modeling for Adaptive and Intelligent Control”—Special Issue Book," Mathematics, MDPI, vol. 11(8), pages 1-3, April.
    2. Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2023. "Synthesis of Nonlinear Nonstationary Stochastic Systems by Wavelet Canonical Expansions," Mathematics, MDPI, vol. 11(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mart Ratas & Jüri Majak & Andrus Salupere, 2021. "Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method," Mathematics, MDPI, vol. 9(21), pages 1-12, November.
    2. Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2021. "Wavelet Modeling of Control Stochastic Systems at Complex Shock Disturbances," Mathematics, MDPI, vol. 9(20), pages 1-15, October.
    3. Bulut, Fatih & Oruç, Ömer & Esen, Alaattin, 2022. "Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 277-290.
    4. Ahsan, Muhammad & Lei, Weidong & Bohner, Martin & Khan, Amir Ali, 2024. "A high-order multi-resolution wavelet method for nonlinear systems of differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 543-559.
    5. Singh, Randhir & Guleria, Vandana & Singh, Mehakpreet, 2020. "Haar wavelet quasilinearization method for numerical solution of Emden–Fowler type equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 123-133.
    6. Pervaiz, Nosheen & Aziz, Imran, 2020. "Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Ihtisham Ul Haq & Numan Ullah & Nigar Ali & Kottakkaran Sooppy Nisar, 2022. "A New Mathematical Model of COVID-19 with Quarantine and Vaccination," Mathematics, MDPI, vol. 11(1), pages 1-21, December.
    8. Jahangiri, Ali & Mohammadi, Samira & Akbari, Mohammad, 2019. "Modeling the one-dimensional inverse heat transfer problem using a Haar wavelet collocation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 13-26.
    9. Ahsan, Muhammad & Bohner, Martin & Ullah, Aizaz & Khan, Amir Ali & Ahmad, Sheraz, 2023. "A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 166-180.
    10. Hsiao, C.H., 2004. "Haar wavelet approach to linear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 561-567.
    11. Awati, Vishwanath B. & Goravar, Akash & N., Mahesh Kumar, 2024. "Spectral and Haar wavelet collocation method for the solution of heat generation and viscous dissipation in micro-polar nanofluid for MHD stagnation point flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 158-183.
    12. Hsiao, Chun-Hui & Wang, Wen-June, 2001. "Haar wavelet approach to nonlinear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(6), pages 347-353.
    13. Karkera, Harinakshi & Katagi, Nagaraj N. & Kudenatti, Ramesh B., 2020. "Analysis of general unified MHD boundary-layer flow of a viscous fluid - a novel numerical approach through wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 135-154.
    14. C. H. Hsiao & W. J. Wang, 1999. "Optimal Control of Linear Time-Varying Systems via Haar Wavelets," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 641-655, December.
    15. Siraj-ul-Islam, & Haider, Nadeem & Aziz, Imran, 2018. "Meshless and multi-resolution collocation techniques for parabolic interface models," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 313-332.
    16. Hsiao, Chun-Hui, 2015. "A Haar wavelets method of solving differential equations characterizing the dynamics of a current collection system for an electric locomotive," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 928-935.
    17. Hsiao, Chun-Hui & Wang, Wen-June, 1999. "State analysis of time-varying singular nonlinear systems via Haar wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 51(1), pages 91-100.
    18. Xuan Liu & Muhammad Ahsan & Masood Ahmad & Muhammad Nisar & Xiaoling Liu & Imtiaz Ahmad & Hijaz Ahmad, 2021. "Applications of Haar Wavelet-Finite Difference Hybrid Method and Its Convergence for Hyperbolic Nonlinear Schr ö dinger Equation with Energy and Mass Conversion," Energies, MDPI, vol. 14(23), pages 1-17, November.
    19. C. H. Hsiao & W. J. Wang, 1999. "State Analysis and Optimal Control of Time-Varying Discrete Systems via Haar Wavelets," Journal of Optimization Theory and Applications, Springer, vol. 103(3), pages 623-640, December.
    20. Tian, Yongge & Herzberg, Agnes M., 2006. "A-minimax and D-minimax robust optimal designs for approximately linear Haar-wavelet models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2942-2951, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1517-:d:807379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.