IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v215y2024icp543-559.html
   My bibliography  Save this article

A high-order multi-resolution wavelet method for nonlinear systems of differential equations

Author

Listed:
  • Ahsan, Muhammad
  • Lei, Weidong
  • Bohner, Martin
  • Khan, Amir Ali

Abstract

In this article, the applications of the new Haar wavelet collocation methods called as Haar wavelet collocation method (HWCM) and higher-order Haar wavelet collocation method (H-HWCM) are developed for the solution of linear and nonlinear systems of ordinary differential equations. The proposed H-HWCM is compared with a variety of other methods including the well-known HWCM. The quasi-linearization technique is introduced in the nonlinear cases. The stability and convergence of both techniques is studied in detail, which are the important parts to analyze the proposed methods. The efficiency of the methods is illustrated with certain numerical examples, but the H-HWCM is more accurate with faster convergence than the HWCM and other methods reported in the literature.

Suggested Citation

  • Ahsan, Muhammad & Lei, Weidong & Bohner, Martin & Khan, Amir Ali, 2024. "A high-order multi-resolution wavelet method for nonlinear systems of differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 543-559.
  • Handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:543-559
    DOI: 10.1016/j.matcom.2023.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsiao, Chun-Hui, 1997. "State analysis of linear time delayed systems via Haar wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(5), pages 457-470.
    2. Ahsan, Muhammad & Bohner, Martin & Ullah, Aizaz & Khan, Amir Ali & Ahmad, Sheraz, 2023. "A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 166-180.
    3. Xuan Liu & Muhammad Ahsan & Masood Ahmad & Muhammad Nisar & Xiaoling Liu & Imtiaz Ahmad & Hijaz Ahmad, 2021. "Applications of Haar Wavelet-Finite Difference Hybrid Method and Its Convergence for Hyperbolic Nonlinear Schr ö dinger Equation with Energy and Mass Conversion," Energies, MDPI, vol. 14(23), pages 1-17, November.
    4. Ahsan, Muhammad & Ahmad, Imtiaz & Ahmad, Masood & Hussian, Iltaf, 2019. "A numerical Haar wavelet-finite difference hybrid method for linear and non-linear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 13-25.
    5. Hsiao, Chun-Hui & Wang, Wen-June, 2001. "Haar wavelet approach to nonlinear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(6), pages 347-353.
    6. Norberg, Ragnar, 1995. "Differential equations for moments of present values in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 171-180, October.
    7. Nazir, Shah & Shahzad, Sara & Wirza, Rahmita & Amin, Rohul & Ahsan, Muhammad & Mukhtar, Neelam & García-Magariño, Iván & Lloret, Jaime, 2019. "Birthmark based identification of software piracy using Haar wavelet," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 144-154.
    8. Hsiao, C.H., 2004. "Haar wavelet approach to linear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 561-567.
    9. Zaheer-ud-Din & Muhammad Ahsan & Masood Ahmad & Wajid Khan & Emad E. Mahmoud & Abdel-Haleem Abdel-Aty, 2020. "Meshless Analysis of Nonlocal Boundary Value Problems in Anisotropic and Inhomogeneous Media," Mathematics, MDPI, vol. 8(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazzoccoli, Alessandro & Rivero, Jorge Andres & Vellucci, Pierluigi, 2024. "Refining Heisenberg’s principle: A greedy approximation of step functions with triangular waveform dictionaries," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 165-176.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Liu & Muhammad Ahsan & Masood Ahmad & Muhammad Nisar & Xiaoling Liu & Imtiaz Ahmad & Hijaz Ahmad, 2021. "Applications of Haar Wavelet-Finite Difference Hybrid Method and Its Convergence for Hyperbolic Nonlinear Schr ö dinger Equation with Energy and Mass Conversion," Energies, MDPI, vol. 14(23), pages 1-17, November.
    2. Mart Ratas & Jüri Majak & Andrus Salupere, 2021. "Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method," Mathematics, MDPI, vol. 9(21), pages 1-12, November.
    3. Ahsan, Muhammad & Bohner, Martin & Ullah, Aizaz & Khan, Amir Ali & Ahmad, Sheraz, 2023. "A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 166-180.
    4. Pervaiz, Nosheen & Aziz, Imran, 2020. "Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2022. "Bayes Synthesis of Linear Nonstationary Stochastic Systems by Wavelet Canonical Expansions," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    6. Siraj-ul-Islam, & Haider, Nadeem & Aziz, Imran, 2018. "Meshless and multi-resolution collocation techniques for parabolic interface models," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 313-332.
    7. Hsiao, Chun-Hui, 2015. "A Haar wavelets method of solving differential equations characterizing the dynamics of a current collection system for an electric locomotive," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 928-935.
    8. Tian, Yongge & Herzberg, Agnes M., 2006. "A-minimax and D-minimax robust optimal designs for approximately linear Haar-wavelet models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2942-2951, June.
    9. Amin, Rohul & Shah, Kamal & Asif, Muhammad & Khan, Imran, 2021. "A computational algorithm for the numerical solution of fractional order delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    10. Igor Sinitsyn & Vladimir Sinitsyn & Eduard Korepanov & Tatyana Konashenkova, 2021. "Wavelet Modeling of Control Stochastic Systems at Complex Shock Disturbances," Mathematics, MDPI, vol. 9(20), pages 1-15, October.
    11. Singh, Randhir & Guleria, Vandana & Singh, Mehakpreet, 2020. "Haar wavelet quasilinearization method for numerical solution of Emden–Fowler type equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 123-133.
    12. Feng, Xinlong & He, Guoliang & Abdurishit,, 2008. "Estimation of parameters of the Makeham distribution using the least squares method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 34-44.
    13. Jamaal Ahmad & Mogens Bladt, 2022. "Phase-type representations of stochastic interest rates with applications to life insurance," Papers 2207.11292, arXiv.org, revised Nov 2022.
    14. Asmussen, Soren & Moller, Jakob R., 2003. "Risk comparisons of premium rules: optimality and a life insurance study," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 331-344, July.
    15. Usman, Muhammad & Hamid, Muhammad & Liu, Moubin, 2021. "Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Xiaofei Qin & Youhua Fan & Hongjun Li & Weidong Lei, 2022. "A Direct Method for Solving Singular Integrals in Three-Dimensional Time-Domain Boundary Element Method for Elastodynamics," Mathematics, MDPI, vol. 10(2), pages 1-17, January.
    17. Djehiche, Boualem & Löfdahl, Björn, 2014. "Risk aggregation and stochastic claims reserving in disability insurance," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 100-108.
    18. Karabulut, Gokhan & Bilgin, Mehmet Huseyin & Doker, Asli Cansin, 2020. "The relationship between commodity prices and world trade uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 276-281.
    19. Hsiao, C.H., 2004. "Haar wavelet approach to linear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(5), pages 561-567.
    20. Hsiao, Chun-Hui & Wang, Wen-June, 2001. "Haar wavelet approach to nonlinear stiff systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(6), pages 347-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:543-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.