IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i7d10.1007_s10845-023-02186-1.html
   My bibliography  Save this article

Label propagation-based unsupervised domain adaptation for intelligent fault diagnosis

Author

Listed:
  • Huanjie Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuan Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiwei Bai

    (Chinese Academy of Sciences)

  • Jingwei Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jie Tan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chengbao Liu

    (Chinese Academy of Sciences)

Abstract

Current unsupervised domain adaptation methods for intelligent fault diagnosis focus on learning domain-invariant representations under covariate shift assumption. However, the covariate shift assumption is usually unsatisfied when each fault class in different domains consists of multiple modes with skewed proportions, which is common in industrial scenarios. Imbalanced data from multiple modes cause the presence of within-domain class imbalance and between-domain label distributional shift. This paper introduces a novel subpopulation shift that further considers the domain shift from a subpopulation perspective, i.e., that covariate shift and label distributional shift across domains are caused by shifts in the multiple modes. To address this issue, a label propagation-based unsupervised domain adaptation is proposed based on a realistic expansion assumption. We apply the theoretical analysis of the proposed method with a bi-level optimization strategy adapted from meta-learning. Using joint optimization of a teacher model and a student model, the label propagation-based model-agnostic meta-learning (LPMAML) not only propagates supervision information from the source to the target but also adjusts the teacher’s strategy throughout the student’s learning process. To alleviate the noise caused by label distributional shift, we integrate a sampling-based alignment method that aligns the empirical label distributions across the two domains into LPMAML. Experimental results on three bearing datasets show that the proposed method has impressive generalization ability under covariate, label distributional, and subpopulation shifts. The proposed method offers consistent improvements to unsupervised domain adaptation (UDA) methods. Compared with the vanilla UDA methods, the average diagnosis accuracies of the proposed method on the label distributional shift benchmark and subpopulation shift benchmark are improved by 8.21% and 7.63%, respectively.

Suggested Citation

  • Huanjie Wang & Yuan Li & Xiwei Bai & Jingwei Li & Jie Tan & Chengbao Liu, 2024. "Label propagation-based unsupervised domain adaptation for intelligent fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3131-3148, October.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02186-1
    DOI: 10.1007/s10845-023-02186-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02186-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02186-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Sangho Lee & Jeongsub Choi & Youngdoo Son, 2024. "Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network," Annals of Operations Research, Springer, vol. 339(1), pages 813-833, August.
    3. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    4. Roman Rodriguez-Aguilar & Jose-Antonio Marmolejo-Saucedo & Utku Köse, 2024. "Development of a Digital Twin Driven by a Deep Learning Model for Fault Diagnosis of Electro-Hydrostatic Actuators," Mathematics, MDPI, vol. 12(19), pages 1-17, October.
    5. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Pang, Zhendong & Luan, Yingxin & Chen, Jiahong & Li, Teng, 2024. "ParInfoGPT: An LLM-based two-stage framework for reliability assessment of rotating machine under partial information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    7. Vikas Singh & Purushottam Gangsar & Rajkumar Porwal & A. Atulkar, 2023. "Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 931-960, March.
    8. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Chuanxia Jian & Yinhui Ao, 2023. "Imbalanced fault diagnosis based on semi-supervised ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3143-3158, October.
    10. Yuhao Zhou & Ruijie Wang & An Zeng, 2022. "Predicting the impact and publication date of individual scientists’ future papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1867-1882, April.
    11. Jiayang Liu & Fuqi Xie & Qiang Zhang & Qiucheng Lyu & Xiaosun Wang & Shijing Wu, 2024. "A multisensory time-frequency features fusion method for rotating machinery fault diagnosis under nonstationary case," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3197-3217, October.
    12. Xu, Zifei & Mei, Xuan & Wang, Xinyu & Yue, Minnan & Jin, Jiangtao & Yang, Yang & Li, Chun, 2022. "Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors," Renewable Energy, Elsevier, vol. 182(C), pages 615-626.
    13. Hanting Zhou & Wenhe Chen & Jing Liu & Longsheng Cheng & Min Xia, 2024. "Trustworthy and intelligent fault diagnosis with effective denoising and evidential stacked GRU neural network," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3523-3542, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02186-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.