IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i5d10.1007_s10845-022-01926-z.html
   My bibliography  Save this article

Image-based characterization of laser scribing quality using transfer learning

Author

Listed:
  • Mohammad Najjartabar Bisheh

    (Kansas State University)

  • Xinya Wang

    (Kansas State University)

  • Shing I. Chang

    (Kansas State University)

  • Shuting Lei

    (Kansas State University)

  • Jianfeng Ma

    (Saint Louis University)

Abstract

Ultrafast laser scribing provides a new microscale materials processing capability. Due to the processing speed and high-quality requirement in modern industrial applications, it is important to measure and monitor quality characteristics in real time during a scribing process. Although deep learning models have been successfully applied for quality monitoring of laser welding and laser based additive manufacturing, these models require a large sample for training and a time-consuming data labelling procedure for a new application such as the laser scribing process. This paper presents a study on image-based characterization of laser scribing quality using a deep transfer learning model for several quality characteristics such as debris, scribe width, and straightness of a scribe line. Images taken from the laser scribes on intrinsic Si wafers are examined. These images are labelled in a large and a small dataset, respectively. The large dataset includes 154 and small dataset includes 21 images. A novel transfer deep convolutional neural network (TDCNN) model is proposed to learn and assess scribe quality using the small dataset. The proposed TDCNN is able to overcome the data challenge by leveraging a convolutional neural network (CNN) model already trained for basic geometric features. Appropriate image processing techniques are provided to measure scribe width and line straightness as well as total scribe and debris area using classified images with 96 percent accuracy. Validating model’s performance based on the small data set, the model trained with the large dataset has a similar accuracy of 97 percent. The trained TDCNN model was also applied to a different scribing application. With 10 additional images to retrain the model, the model accuracy performs as well as the original model at 96 percent. Based on the proposed TDCNN classification of debris on a scribed image of straight lines, two algorithms are proposed to compute scribe width and straightness. The results show that all the three quality characteristics of debris, scribe width, and scribe straightness can be effectively measured based on a much smaller set of images than regular CNN models would require.

Suggested Citation

  • Mohammad Najjartabar Bisheh & Xinya Wang & Shing I. Chang & Shuting Lei & Jianfeng Ma, 2023. "Image-based characterization of laser scribing quality using transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2307-2319, June.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01926-z
    DOI: 10.1007/s10845-022-01926-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01926-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01926-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos Gonzalez-Val & Adrian Pallas & Veronica Panadeiro & Alvaro Rodriguez, 2020. "A convolutional approach to quality monitoring for laser manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 789-795, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ammar H. Elsheikh & Taher A. Shehabeldeen & Jianxin Zhou & Ezzat Showaib & Mohamed Abd Elaziz, 2021. "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1377-1388, June.
    2. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    3. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    4. Angel-Iván García-Moreno, 2022. "A fast method for monitoring molten pool in infrared image streams using gravitational superpixels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1779-1794, August.
    5. Zilong Zhuang & Liangxun Guo & Zizhao Huang & Yanning Sun & Wei Qin & Zhao-Hui Sun, 2021. "DyS-IENN: a novel multiclass imbalanced learning method for early warning of tardiness in rocket final assembly process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2197-2207, December.
    6. Deyuan Ma & Ping Jiang & Leshi Shu & Zhaoliang Gong & Yilin Wang & Shaoning Geng, 2024. "Online porosity prediction in laser welding of aluminum alloys based on a multi-fidelity deep learning framework," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 55-73, January.
    7. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    8. Michael D. T. McDonnell & Daniel Arnaldo & Etienne Pelletier & James A. Grant-Jacob & Matthew Praeger & Dimitris Karnakis & Robert W. Eason & Ben Mills, 2021. "Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1471-1483, June.
    9. Chenglin Li & Baohai Wu & Zhao Zhang & Ying Zhang, 2023. "A novel process planning method of 3 + 2-axis additive manufacturing for aero-engine blade based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2027-2042, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:5:d:10.1007_s10845-022-01926-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.