IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i4d10.1007_s10845-021-01902-z.html
   My bibliography  Save this article

Predicting part distortion field in additive manufacturing: a data-driven framework

Author

Listed:
  • Osama Aljarrah

    (Youngstown State University)

  • Jun Li

    (University of Massachusetts Dartmouth)

  • Alfa Heryudono

    (University of Massachusetts Dartmouth)

  • Wenzhen Huang

    (University of Massachusetts Dartmouth)

  • Jing Bi

    (Dassault Systẽmes SIMULIA Corp)

Abstract

The underlying complicated spatiotemporal thermo-mechanical processes in additive manufacturing (AM) technology pose challenges in predicting and optimizing the as-built part quality for production use. Physics-based simulations are being developed to provide reliable predictions such as part distortions, residual stresses/strains, microstructure contents, and grain morphology, which can guide the product design and manufacturing process for improved part quality. However, due to the complexity of the problem, e.g., multi-physics and multi-scale, physics-based models need the expertise to build an extensive simulation time preventing its use in real-time monitoring and control. This study proposes an inductive data-driven framework to simulate the part distortion field for additively manufactured components. The part distortion field data were collected from different AM build strategies using finite element (FE) simulations. The FE model consists of multi-layer part distortion fields as outputs constituted by AM process parameters as inputs. The surrogate model consists of two stages: (1) self-organizing map to project the high-dimensional spatial field of the part distortion into a likelihood estimator, (2) hybrid self-organizing methods to predict the extracted features and reconstruct the part distortion field. The data-driven model evaluates different build scenarios’ effects on the distortion field for additively manufactured parts. The results correlated well with FE simulations and established a prediction-based compensation strategy to reduce part distortions. It should be noted that while the framework is currently applied to FE simulation data, the integrated data-driven methods can also be deployed on experimentally measured 3D cloud data or other high throughput field measurements.

Suggested Citation

  • Osama Aljarrah & Jun Li & Alfa Heryudono & Wenzhen Huang & Jing Bi, 2023. "Predicting part distortion field in additive manufacturing: a data-driven framework," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1975-1993, April.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01902-z
    DOI: 10.1007/s10845-021-01902-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01902-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01902-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
    2. Chunyang Xia & Zengxi Pan & Joseph Polden & Huijun Li & Yanling Xu & Shanben Chen, 2022. "Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1467-1482, June.
    3. Yilin Guo & Wen Feng Lu & Jerry Ying Hsi Fuh, 2021. "Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 347-359, February.
    4. Jingchang Li & Qi Zhou & Xufeng Huang & Menglei Li & Longchao Cao, 2023. "In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 853-867, February.
    5. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    6. Tamie Takeda Yokoyama & Satie Ledoux Takeda-Berger & Marco Aurélio Oliveira & Andre Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Enzo Morosini Frazzon, 2023. "Bayesian networks as a guide to value stream mapping for lean office implementation: a proposed framework," Operations Management Research, Springer, vol. 16(1), pages 49-79, March.
    7. Jingchang Li & Longchao Cao & Jiexiang Hu & Minhua Sheng & Qi Zhou & Peng Jin, 2022. "A prediction approach of SLM based on the ensemble of metamodels considering material efficiency, energy consumption, and tensile strength," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 687-702, March.
    8. Paromita Nath & Sankaran Mahadevan, 2023. "Probabilistic predictive control of porosity in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1085-1103, March.
    9. Vivek Mahato & Muhannad Ahmed Obeidi & Dermot Brabazon & Pádraig Cunningham, 2022. "Detecting voids in 3D printing using melt pool time series data," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 845-852, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01902-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.