IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i7d10.1007_s10845-023-02199-w.html
   My bibliography  Save this article

Object detection for blind inspection of industrial products based on neural architecture search

Author

Listed:
  • Lin Huang

    (Guilin University of Technology)

  • Weiming Deng

    (Guilin University of Technology)

  • Chunchun Li

    (Guilin University of Technology)

  • Tiejun Yang

    (Guilin Medical University)

Abstract

Object detection is a key technology to realize the blind inspection of industrial products. To improve the automation degree of building deep convolutional neural networks (CNNs) for object detection and further improve the detection accuracy, this paper proposes an improved neural architecture search method using exclusive-OR (XOR)-based channel feature fusion. First, an XOR-based channel fusion module is designed; it can fuse the feature mapping of different scales at the channel level in the case of multibranch access complementarily. Then, an improved cell pruning strategy is proposed to efficiently prune the connections between cells by setting the architecture parameters of the candidate operations to 0 s, which are in the alignment layers of the subsequent cells. The cell pruning strategy can directly search the multibranch CNN models and narrow the neural network architectures’ gap between the search stage and the evaluation stage. The experimental results show that the proposed method takes approximately 0.75 GPU days to search the optimal neural network on a dataset including six classes for blind inspection of industrial products, and the mean average precision (mAP) is approximately 99.1% on a test dataset, which is higher than those of state-of-the-art methods, e.g., DenseNAS and CSPDarknet53.

Suggested Citation

  • Lin Huang & Weiming Deng & Chunchun Li & Tiejun Yang, 2024. "Object detection for blind inspection of industrial products based on neural architecture search," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3185-3195, October.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02199-w
    DOI: 10.1007/s10845-023-02199-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02199-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02199-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aslı Çelik & Ayhan Küçükmanisa & Aydın Sümer & Aysun Taşyapı Çelebi & Oğuzhan Urhan, 2022. "A real-time defective pixel detection system for LCDs using deep learning based object detectors," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 985-994, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02199-w. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.