IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i4d10.1007_s10845-020-01693-9.html
   My bibliography  Save this article

A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem

Author

Listed:
  • Junqi Liu

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

  • Zeqiang Zhang

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

  • Feng Chen

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

  • Silu Liu

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

  • Lixia Zhu

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

Abstract

Aiming at the lack of relevant research on relationship constraints between facilities in the corridor allocation problem (CAP). In this paper, fixed position constraints and ordering constraints are considered in CAP, and the logistics cost is minimized. Considering that the existing search technology is complicated and time-consuming in dealing with such constrained CAP (cCAP), and immune clone selection algorithm with variable neighborhood operation (ICSAVNS) is provided for solving this problem. Two approaches to initial solution generation are designed to improve the quality of the initial population. A variable neighborhood search operator is embedded to improve the accuracy of the local search. A threshold is set in the mutation operation of the ICSAVNS to achieve population expansion better. A double index of sequences consisting of affinity values and constrained facility index values is used to select and reselect, achieving population compression in the clonal selection part. Finally, by exactly solving the model, the rationality of the model is verified. The hybrid clone selection algorithm is used to solve the cCAP and cbCAP benchmark instances of different sizes, and compared with the state-of-the-art optimization algorithms. The results show that the proposed algorithm exhibits better performance.

Suggested Citation

  • Junqi Liu & Zeqiang Zhang & Feng Chen & Silu Liu & Lixia Zhu, 2022. "A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 953-972, April.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-020-01693-9
    DOI: 10.1007/s10845-020-01693-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01693-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01693-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heragu, Sunderesh S. & Kusiak, Andrew, 1991. "Efficient models for the facility layout problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 1-13, July.
    2. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.
    3. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    4. Ghorbanali Moslemipour & T.S. Lee & Y.T. Loong, 2018. "Solving stochastic dynamic facility layout problems using proposed hybrid AC-CS-SA meta-heuristic algorithm," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 28(1), pages 1-31.
    5. Sunderesh S. Heragu & Andrew Kusiak, 1988. "Machine Layout Problem in Flexible Manufacturing Systems," Operations Research, INFORMS, vol. 36(2), pages 258-268, April.
    6. Ghosh, Diptesh & Kothari, Ravi, 2012. "Population Heuristics for the Corridor Allocation Problem," IIMA Working Papers WP2012-09-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. I. Jerin Leno & S. Saravana Sankar & S. G. Ponnambalam, 2018. "MIP model and elitist strategy hybrid GA–SA algorithm for layout design," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 369-387, February.
    8. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    9. Ahonen, H. & de Alvarenga, A.G. & Amaral, A.R.S., 2014. "Simulated annealing and tabu search approaches for the Corridor Allocation Problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 221-233.
    10. Datta, Dilip & Amaral, André R.S. & Figueira, José Rui, 2011. "Single row facility layout problem using a permutation-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 213(2), pages 388-394, September.
    11. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    12. Chao Guan & Zeqiang Zhang & Yunpeng Li, 2019. "A flower pollination algorithm for the double-floor corridor allocation problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6506-6527, October.
    13. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    14. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    15. Donald M. Simmons, 1969. "One-Dimensional Space Allocation: An Ordering Algorithm," Operations Research, INFORMS, vol. 17(5), pages 812-826, October.
    16. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    17. Hungerländer, Philipp & Anjos, Miguel F., 2015. "A semidefinite optimization-based approach for global optimization of multi-row facility layout," European Journal of Operational Research, Elsevier, vol. 245(1), pages 46-61.
    18. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
    19. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiaoyu Zhang & Yan Lin, 2024. "Integrating multi-agent reinforcement learning and 3D A* search for facility layout problem considering connector-assembly," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3393-3418, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    2. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    3. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    4. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
    5. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
    6. Dahlbeck, Mirko, 2021. "A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem," European Journal of Operational Research, Elsevier, vol. 295(2), pages 443-462.
    7. Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
    8. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
    9. Hungerländer, Philipp & Anjos, Miguel F., 2015. "A semidefinite optimization-based approach for global optimization of multi-row facility layout," European Journal of Operational Research, Elsevier, vol. 245(1), pages 46-61.
    10. Uma Kothari & Diptesh Ghosh, 2012. "A Competitive Genetic Algorithm for Single Row Facility Layout," Working Papers id:4915, eSocialSciences.
    11. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    12. Kothari, Ravi & Ghosh, Diptesh, 2012. "A Lin-Kernighan Heuristic for Single Row Facility Layout," IIMA Working Papers WP2012-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
    14. Ahonen, H. & de Alvarenga, A.G. & Amaral, A.R.S., 2014. "Simulated annealing and tabu search approaches for the Corridor Allocation Problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 221-233.
    15. Kothari, Ravi & Ghosh, Diptesh, 2012. "Scatter Search Algorithms for the Single Row Facility Layout Problem," IIMA Working Papers WP2012-04-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Kothari, Ravi & Ghosh, Diptesh, 2012. "Path Relinking for Single Row Facility Layout," IIMA Working Papers WP2012-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Wu, Song & Yang, Wei & Hanafi, Saïd & Wilbaut, Christophe & Wang, Yang, 2024. "Iterated local search with ejection chains for the space-free multi-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 873-886.
    18. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    19. Kothari, Ravi & Ghosh, Diptesh, 2012. "Sensitivity Analysis for the Single Row Facility Layout Problem," IIMA Working Papers WP2012-04-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Anjos, Miguel F. & Fischer, Anja & Hungerländer, Philipp, 2018. "Improved exact approaches for row layout problems with departments of equal length," European Journal of Operational Research, Elsevier, vol. 270(2), pages 514-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-020-01693-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.