IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i1p129-143.html
   My bibliography  Save this article

Correlation-aware resource service composition and optimal-selection in manufacturing grid

Author

Listed:
  • Tao, Fei
  • Zhao, Dongming
  • Yefa, Hu
  • Zhou, Zude

Abstract

For a multi-resource service request task (MRSRTask) in manufacturing grid (MGrid) system, in addition to the search for all qualified resource services according to each subtask, the system selects one candidate resource service for each subtask. Then the system generates a new composite resource service (CRS) and selects the optimal resource service composite path from all possible paths to execute the task with the given multi-objective (e.g., time minimization, cost minimization and reliability maximization) and multi-constraints. The above problem is defined as multi-objective MGrid resource service composition and optimal-selection (MO-MRSCOS) problem. The formulation is presented for an MO-MRSCOS problem. The correlations among resource services are taken into account during MGrid resource service composition, and a QoS description mode supporting resource service correlation is presented. The basic resource service composite modes (RSCM) for CRS are described, and the principles for translating a complicated RSCM into a simple sequence RSCM are presented for simplifying the resolving process and complexity of MO-MRSCOS problem. A new method based on the principles of particle swarm optimization (PSO), is proposed for solving MO-MRSCOS problem. Unlike previous works: (a) the proposed PSO algorithms combine the non-dominated sorting technique to achieve the selection of global best position and private best position; (b) the parameters of particle updating formulation in PSO are dynamical generated in order to make a compromise between the global exploration and local exploitation abilities of PSO; (c) permutation-based and objective-based population trimming operators are applied in PSO to maintain diversity of solutions in population. The experimental results and performance comparison show that the proposed method is both effective and efficient.

Suggested Citation

  • Tao, Fei & Zhao, Dongming & Yefa, Hu & Zhou, Zude, 2010. "Correlation-aware resource service composition and optimal-selection in manufacturing grid," European Journal of Operational Research, Elsevier, vol. 201(1), pages 129-143, February.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:129-143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00112-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei He & Guozhu Jia & Hengshan Zong & Tao Huang, 2019. "Multi-Objective Cloud Manufacturing Service Selection and Scheduling with Different Objective Priorities," Sustainability, MDPI, vol. 11(17), pages 1-24, September.
    2. Shuangyao Zhao & Qiang Zhang & Zhanglin Peng & Xiaonong Lu, 2020. "Personalized manufacturing service composition recommendation: combining combinatorial optimization and collaborative filtering," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 733-756, October.
    3. Wei He & Guozhu Jia & Hengshan Zong & Jili Kong, 2019. "Multi-Objective Service Selection and Scheduling with Linguistic Preference in Cloud Manufacturing," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    4. Hong Jin & Xifan Yao & Yong Chen, 2017. "Correlation-aware QoS modeling and manufacturing cloud service composition," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1947-1960, December.
    5. Hao Li & Shanghua Mi & Qifeng Li & Xiaoyu Wen & Dongping Qiao & Guofu Luo, 2020. "A scheduling optimization method for maintenance, repair and operations service resources of complex products," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1673-1691, October.
    6. Yushu Yang & Jie Lin & Zijuan Hu, 2024. "A Unique Bifuzzy Manufacturing Service Composition Model Using an Extended Teaching-Learning-Based Optimization Algorithm," Mathematics, MDPI, vol. 12(18), pages 1-26, September.
    7. Shuai Ding & Chen-Yi Xia & Kai-Le Zhou & Shan-Lin Yang & Jennifer S Shang, 2014. "Decision Support for Personalized Cloud Service Selection through Multi-Attribute Trustworthiness Evaluation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    8. Yingxin Ye & Tianliang Hu & Yan Yang & Wendan Zhu & Chengrui Zhang, 2020. "A knowledge based intelligent process planning method for controller of computer numerical control machine tools," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1751-1767, October.
    9. Wenxiang Xu & Shunsheng Guo, 2019. "A Multi-Objective and Multi-Dimensional Optimization Scheduling Method Using a Hybrid Evolutionary Algorithms with a Sectional Encoding Mode," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    10. Yankai Wang & Shilong Wang & Bo Yang & Bo Gao & Sibao Wang, 2022. "An effective adaptive adjustment method for service composition exception handling in cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 735-751, March.
    11. Tianyang Li & Ting He & Zhongjie Wang & Yufeng Zhang, 2020. "SDF-GA: a service domain feature-oriented approach for manufacturing cloud service composition," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 681-702, March.
    12. Shuai Zhang & Yangbing Xu & Wenyu Zhang & Dejian Yu, 2019. "A new fuzzy QoS-aware manufacture service composition method using extended flower pollination algorithm," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2069-2083, June.
    13. Shuangyao Zhao & Qiang Zhang & Zhanglin Peng & Xiaonong Lu, 0. "Personalized manufacturing service composition recommendation: combining combinatorial optimization and collaborative filtering," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:129-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.