Reinforcement learning applications to machine scheduling problems: a comprehensive literature review
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-021-01847-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jack P. C. Kleijnen, 2015.
"Simulation Optimization,"
International Series in Operations Research & Management Science, in: Design and Analysis of Simulation Experiments, edition 2, chapter 6, pages 241-300,
Springer.
- Jack P.C. Kleijnen, 2008. "Simulation optimization," International Series in Operations Research & Management Science, in: Design and Analysis of Simulation Experiments, chapter 4, pages 101-138, Springer.
- Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
- Arezoo Atighehchian & Mohammad Mehdi Sepehri, 2013. "An environment-driven, function-based approach to dynamic single-machine scheduling," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 7(1), pages 100-118.
- Tapas K. Das & Abhijit Gosavi & Sridhar Mahadevan & Nicholas Marchalleck, 1999. "Solving Semi-Markov Decision Problems Using Average Reward Reinforcement Learning," Management Science, INFORMS, vol. 45(4), pages 560-574, April.
- Seunghoon Lee & Yongju Cho & Young Hoon Lee, 2020. "Injection Mold Production Sustainable Scheduling Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
- Zhang, Zhicong & Zheng, Li & Hou, Forest & Li, Na, 2011. "Semiconductor final test scheduling with Sarsa([lambda], k) algorithm," European Journal of Operational Research, Elsevier, vol. 215(2), pages 446-458, December.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Kfir Arviv & Helman Stern & Yael Edan, 2016. "Collaborative reinforcement learning for a two-robot job transfer flow-shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1196-1209, February.
- Manuel Parente & Gonçalo Figueira & Pedro Amorim & Alexandra Marques, 2020. "Production scheduling in the context of Industry 4.0: review and trends," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5401-5431, September.
- Hao-Xiang Wang & Hong-Sen Yan, 2016. "An interoperable adaptive scheduling strategy for knowledgeable manufacturing based on SMGWQ-learning," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1085-1095, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lemstra, Mary Anny Moraes Silva & de Mesquita, Marco Aurélio, 2023. "Industry 4.0: a tertiary literature review," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Andreas Kuhnle & Jan-Philipp Kaiser & Felix Theiß & Nicole Stricker & Gisela Lanza, 2021. "Designing an adaptive production control system using reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 855-876, March.
- Fernando Loor & Veronica Gil-Costa & Mauricio Marin, 2024. "Metric Space Indices for Dynamic Optimization in a Peer to Peer-Based Image Classification Crowdsourcing Platform," Future Internet, MDPI, vol. 16(6), pages 1-29, June.
- Mansoureh Maadi & Hadi Akbarzadeh Khorshidi & Uwe Aickelin, 2021. "A Review on Human–AI Interaction in Machine Learning and Insights for Medical Applications," IJERPH, MDPI, vol. 18(4), pages 1-27, February.
- Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
- Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
- Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
- Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
- Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
- Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
- Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
- Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
- Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
- Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
- Sebastian Mayer & Tobias Classen & Christian Endisch, 2021. "Modular production control using deep reinforcement learning: proximal policy optimization," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2335-2351, December.
- Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
- Ande Chang & Yuting Ji & Chunguang Wang & Yiming Bie, 2024. "CVDMARL: A Communication-Enhanced Value Decomposition Multi-Agent Reinforcement Learning Traffic Signal Control Method," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
- Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
- Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
- He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.
More about this item
Keywords
Reinforcement learning; Q-learning; Machine scheduling; Job shop scheduling problem; Parallel machine scheduling problems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:3:d:10.1007_s10845-021-01847-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.