IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i5d10.1007_s10845-020-01620-y.html
   My bibliography  Save this article

Macroscopic numerical model of reinforced concrete shear walls based on material properties

Author

Listed:
  • Wurong Fu

    (Tongji University)

Abstract

A macroscopic model evaluating shear behavior is necessary to simulate the failure process of shear walls under different axial compression ratios and different out-of-plane bending moments. Accordingly, based on the results of experiments and numerical simulations, a three-segment skeleton curve model was established to reflect the relationship between shear force and deformation when a reinforced concrete shear wall is subjected to axial and horizontal force. Corresponding hysteresis rules were proposed to obtain a macroscopic hysteresis model of the shear wall. Comparison between numerical and experimental results showed that the peak displacement, ductility, and hysteresis characteristics determined using the macroscopic model matched the experimental results well. The numerical results of the macroscopic shear model showed that the in-plane shear performance of a shear wall is almost unchanged when the out-of-plane displacement is very small, but if the displacement along the thickness direction increases, the in-plane shear bearing capacity and the deformation ability of a shear wall will notably decrease. The results can be used for structural design or collapse simulation.

Suggested Citation

  • Wurong Fu, 2021. "Macroscopic numerical model of reinforced concrete shear walls based on material properties," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1401-1410, June.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01620-y
    DOI: 10.1007/s10845-020-01620-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01620-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01620-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamed Bakhtiari & Mahdi Karimi & Sina Rezazadeh, 2016. "Modeling, analysis and multi-objective optimization of twist extrusion process using predictive models and meta-heuristic approaches, based on finite element results," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 463-473, April.
    2. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    3. Andrej Tibaut & Danijel Rebolj & Matjaž Nekrep Perc, 2016. "Interoperability requirements for automated manufacturing systems in construction," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 251-262, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    2. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    3. Pompeu Casanovas & Louis de Koker & Mustafa Hashmi, 2022. "Law, Socio-Legal Governance, the Internet of Things, and Industry 4.0: A Middle-Out/Inside-Out Approach," J, MDPI, vol. 5(1), pages 1-28, January.
    4. Anna Kwiotkowska & Radosław Wolniak & Bożena Gajdzik & Magdalena Gębczyńska, 2022. "Configurational Paths of Leadership Competency Shortages and 4.0 Leadership Effectiveness: An fs/QCA Study," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    5. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    6. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    7. Iñigo Flores Ituarte & Suraj Panicker & Hari P. N. Nagarajan & Eric Coatanea & David W. Rosen, 2023. "Optimisation-driven design to explore and exploit the process–structure–property–performance linkages in digital manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 219-241, January.
    8. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    9. Liangjie Xia & Yongwan Bai & Sanjoy Ghose & Juanjuan Qin, 2022. "Differential game analysis of carbon emissions reduction and promotion in a sustainable supply chain considering social preferences," Annals of Operations Research, Springer, vol. 310(1), pages 257-292, March.
    10. John Mugambwa Serumaga-Zake & John Andrew van der Poll, 2021. "Addressing the Impact of Fourth Industrial Revolution on South African Manufacturing Small and Medium Enterprises (SMEs)," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    11. Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
    12. Fadi Shehab Shiyyab & Abdallah Bader Alzoubi & Qais Mohammad Obidat & Hashem Alshurafat, 2023. "The Impact of Artificial Intelligence Disclosure on Financial Performance," IJFS, MDPI, vol. 11(3), pages 1-25, September.
    13. Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.
    14. Andres Bustillo & Roberto Reis & Alisson R. Machado & Danil Yu. Pimenov, 2022. "Improving the accuracy of machine-learning models with data from machine test repetitions," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 203-221, January.
    15. Emilio Moretti & Elena Tappia & Veronique Limère & Marco Melacini, 2021. "Exploring the application of machine learning to the assembly line feeding problem," Operations Management Research, Springer, vol. 14(3), pages 403-419, December.
    16. Yue Wu & Dong-Shang Chang, 2024. "Decomposing the comprehensive efficiency of major cities into divisions on governance, ICT and sustainability: network slack-based measure model," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    17. Jeong, Dong Wook & Moon, Heewon & Jeong, Seol Mi & Moon, Chan Ju, 2024. "Digital capital accumulation in schools, teachers, and students and academic achievement: Cross-country evidence from the PISA 2018," International Journal of Educational Development, Elsevier, vol. 107(C).
    18. Jang, Hyunmi & Haddoud, Mohamed Yacine & Roh, Saeyeon & Onjewu, Adah-Kole Emmanuel & Choi, Taeeun, 2023. "Implementing smart factory: A fuzzy-set analysis to uncover successful paths," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    19. Gu, Yu & Dai, Jun & Vasarhelyi, Miklos A., 2023. "Audit 4.0-based ESG assurance: An example of using satellite images on GHG emissions," International Journal of Accounting Information Systems, Elsevier, vol. 50(C).
    20. Katarzyna Szum & Joanicjusz Nazarko, 2020. "Exploring the Determinants of Industry 4.0 Development Using an Extended SWOT Analysis: A Regional Study," Energies, MDPI, vol. 13(22), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:5:d:10.1007_s10845-020-01620-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.