IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i2d10.1007_s10845-014-0879-6.html
   My bibliography  Save this article

Modeling, analysis and multi-objective optimization of twist extrusion process using predictive models and meta-heuristic approaches, based on finite element results

Author

Listed:
  • Hamed Bakhtiari

    (Bu-Ali Sina University)

  • Mahdi Karimi

    (Bu-Ali Sina University)

  • Sina Rezazadeh

    (Islamic Azad University, Qazvin Branch)

Abstract

Recently, twist extrusion has found extensive applications as a novel method of severe plastic deformation for grain refining of materials. In this paper, two prominent predictive models, response surface method and artificial neural network (ANN) are employed together with results of finite element simulation to model twist extrusion process. Twist angle, friction factor and ram speed are selected as input variables and imposed effective plastic strain, strain homogeneity and maximum punch force are considered as output parameters. Comparison between results shows that ANN outperforms response surface method in modeling twist extrusion process. In addition, statistical analysis of response surface shows that twist extrusion and friction factor have the most and ram speed has the least effect on output parameters at room temperature. Also, optimization of twist extrusion process was carried out by a combination of neural network model and multi-objective meta-heuristic optimization algorithms. For this reason, three prominent multi-objective algorithms, non-dominated sorting genetic algorithm, strength pareto evolutionary algorithm and multi-objective particle swarm optimization (MOPSO) were utilized. Results showed that MOPSO algorithm has relative superiority over other algorithms to find the optimal points.

Suggested Citation

  • Hamed Bakhtiari & Mahdi Karimi & Sina Rezazadeh, 2016. "Modeling, analysis and multi-objective optimization of twist extrusion process using predictive models and meta-heuristic approaches, based on finite element results," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 463-473, April.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:2:d:10.1007_s10845-014-0879-6
    DOI: 10.1007/s10845-014-0879-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0879-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0879-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wurong Fu, 2021. "Macroscopic numerical model of reinforced concrete shear walls based on material properties," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1401-1410, June.
    2. Alejandro Alvarado-Iniesta & Luis Gonzalo Guillen-Anaya & Luis Alberto Rodríguez-Picón & Raul Ñeco-Caberta, 2020. "Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 19-32, January.
    3. Pauline Ong & Choon Sin Ho & Desmond Daniel Vui Sheng Chin & Chee Kiong Sia & Chuan Huat Ng & Md Saidin Wahab & Abduladim Salem Bala, 2019. "Diameter prediction and optimization of hot extrusion-synthesized polypropylene filament using statistical and soft computing techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1957-1972, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:2:d:10.1007_s10845-014-0879-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.