IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i3d10.1007_s10845-014-0907-6.html
   My bibliography  Save this article

An intelligent neural-fuzzy model for an in-process surface roughness monitoring system in end milling operations

Author

Listed:
  • PoTsang B. Huang

    (Chung-Yuan Christian University)

Abstract

In this research, a new intelligent neural-fuzzy in-process surface roughness monitoring (INF-SRM) system for an end milling operation was developed. The success of the INF-SRM system depends on an accurate decision-making algorithm, which can analyze the input factors and then generate an accurate output. A new neural-fuzzy model was proposed and implemented as decision-making algorithm for the INF-SRM system. The objective of the new model is to achieve higher accuracy for surface roughness prediction and solve the disadvantages of both neural networks and fuzzy logic. The neural-assisted method was implemented to generate the fuzzy IF-THEN rules for the model. To evaluate the performance of the new neural-fuzzy model, a neural networks model was applied to develop another surface roughness monitoring system for comparison. A statistical method was finally employed to analyze the accuracy between these systems.

Suggested Citation

  • PoTsang B. Huang, 2016. "An intelligent neural-fuzzy model for an in-process surface roughness monitoring system in end milling operations," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 689-700, June.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:3:d:10.1007_s10845-014-0907-6
    DOI: 10.1007/s10845-014-0907-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0907-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0907-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikas Upadhyay & P.K. Jain & N.K. Mehta, 2013. "Prediction of surface roughness using cutting parameters and vibration signals in minimum quantity coolant assisted turning of Ti-6Al-4V alloy," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 27(1/2/3), pages 33-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. PoTsang B. Huang & Huang-Jie Zhang & Yi-Ching Lin, 2019. "Development of a Grey online modeling surface roughness monitoring system in end milling operations," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1923-1936, April.
    2. Kuo Lu & Jin Xie & Risen Wang & Lei Li & Wenzhe Li & Yuning Jiang, 2022. "A closed-loop intelligent adjustment of process parameters in precise and micro hot-embossing using an in-process optic detection," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2341-2355, December.
    3. Shubham Vaishnav & Ankit Agarwal & K. A. Desai, 2020. "Machine learning-based instantaneous cutting force model for end milling operation," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1353-1366, August.
    4. Gerardo Beruvides & Fernando Castaño & Rodolfo E. Haber & Ramón Quiza & Alberto Villalonga, 2017. "Coping with Complexity When Predicting Surface Roughness in Milling Processes: Hybrid Incremental Model with Optimal Parametrization," Complexity, Hindawi, vol. 2017, pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andhi Indira Kusuma & Yi-Mei Huang, 2023. "Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1683-1699, April.
    2. Abdoulaye Diamoutene & Farid Noureddine & Rachid Noureddine & Bernard Kamsu-Foguem & Diakarya Barro, 2020. "Proportional hazard model for cutting tool recovery in machining," Journal of Risk and Reliability, , vol. 234(2), pages 322-332, April.
    3. Richárd Horváth & Livija Cveticanin & Ivona Ninkov, 2022. "Prediction of Surface Roughness in Turning Applying the Model of Nonlinear Oscillator with Complex Deflection," Mathematics, MDPI, vol. 10(17), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:3:d:10.1007_s10845-014-0907-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.