IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v27y2021i1d10.1007_s10732-021-09473-1.html
   My bibliography  Save this article

A balance-first sequence-last algorithm to design RMS: a matheuristic with performance guaranty to balance reconfigurable manufacturing systems

Author

Listed:
  • Youssef Lahrichi

    (Université Clermont Auvergne)

  • Laurent Deroussi

    (Université Clermont Auvergne)

  • Nathalie Grangeon

    (Université Clermont Auvergne)

  • Sylvie Norre

    (Université Clermont Auvergne)

Abstract

The Reconfigurable Transfer Line Balancing Problem (RTLB) is considered in this paper. This problem is quite recent and motivated by the growing need of reconfigurability in the new industry 4.0 context. The problem consists into allocating a set of operations necessary to machine a single part to different workstations placed into a serial line. Each workstation can contain multiple machines operating in parallel and the tasks allocated to a workstation should be sequenced since sequence-dependent setup times between operations are needed to perform tool changes. Besides, precedence constraints, inclusion, exclusion and accessibility constraints between operations are considered. In this article we propose an efficient matheuristic of type Balance First, Sequence Last (BFSL). This method is a two-step heuristic with a constructive phase and an improvement phase. It contains several components from exact methods (linear programming, constraint generation and dynamic programming) and metaheuristics (simulated annealing). In addition, we show that the constructive algorithm approximates the optimal solution when the setup times are bounded by the processing times and give an approximation ratio. The obtained results show the effectiveness of the proposed approach. The matheuristic clearly outperforms a genetic algorithm from literature on quite large benchmark instances.

Suggested Citation

  • Youssef Lahrichi & Laurent Deroussi & Nathalie Grangeon & Sylvie Norre, 2021. "A balance-first sequence-last algorithm to design RMS: a matheuristic with performance guaranty to balance reconfigurable manufacturing systems," Journal of Heuristics, Springer, vol. 27(1), pages 107-132, April.
  • Handle: RePEc:spr:joheur:v:27:y:2021:i:1:d:10.1007_s10732-021-09473-1
    DOI: 10.1007/s10732-021-09473-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-021-09473-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-021-09473-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salii, Yaroslav, 2019. "Revisiting dynamic programming for precedence-constrained traveling salesman problem and its time-dependent generalization," European Journal of Operational Research, Elsevier, vol. 272(1), pages 32-42.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Yoram Koren & Wencai Wang & Xi Gu, 2017. "Value creation through design for scalability of reconfigurable manufacturing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1227-1242, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    2. Delorme, Xavier & Cerqueus, Audrey & Gianessi, Paolo & Lamy, Damien, 2023. "RMS balancing and planning under uncertain demand and energy cost considerations," International Journal of Production Economics, Elsevier, vol. 261(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    2. Delorme, Xavier & Cerqueus, Audrey & Gianessi, Paolo & Lamy, Damien, 2023. "RMS balancing and planning under uncertain demand and energy cost considerations," International Journal of Production Economics, Elsevier, vol. 261(C).
    3. Battaïa, Olga & Dolgui, Alexandre & Guschinsky, Nikolai, 2023. "MIP-based heuristics for combinatorial design of reconfigurable rotary transfer machines for production of multiple parts," International Journal of Production Economics, Elsevier, vol. 262(C).
    4. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    5. Bustinza, Oscar F. & Opazo-Basaez, Marco & Tarba, Shlomo, 2022. "Exploring the interplay between Smart Manufacturing and KIBS firms in configuring product-service innovation performance," Technovation, Elsevier, vol. 118(C).
    6. Dolgui, Alexandre & Hashemi-Petroodi, S. Ehsan & Kovalev, Sergey & Kovalyov, Mikhail Y., 2021. "Profitability of a multi-model manufacturing line versus multiple dedicated lines," International Journal of Production Economics, Elsevier, vol. 236(C).
    7. Li, Zixiang & Kucukkoc, Ibrahim & Zhang, Zikai, 2020. "Branch, bound and remember algorithm for two-sided assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 896-905.
    8. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    9. Sikora, Celso Gustavo Stall, 2024. "Balancing mixed-model assembly lines for random sequences," European Journal of Operational Research, Elsevier, vol. 314(2), pages 597-611.
    10. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    11. Bautista, Joaquín & Batalla-García, Cristina & Alfaro-Pozo, Rocío, 2016. "Models for assembly line balancing by temporal, spatial and ergonomic risk attributes," European Journal of Operational Research, Elsevier, vol. 251(3), pages 814-829.
    12. Jonathan Oesterle & Lionel Amodeo & Farouk Yalaoui, 2019. "A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1021-1046, March.
    13. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    14. M. H. Alavidoost & M. H. Fazel Zarandi & Mosahar Tarimoradi & Yaser Nemati, 2017. "Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 313-336, February.
    15. Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
    16. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. Delorme, Xavier & Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y., 2019. "Minimizing the number of workers in a paced mixed-model assembly line," European Journal of Operational Research, Elsevier, vol. 272(1), pages 188-194.
    18. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    19. Can B. Kalayci & Olcay Polat & Surendra M. Gupta, 2016. "A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem," Annals of Operations Research, Springer, vol. 242(2), pages 321-354, July.
    20. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2023. "Markov decision process for multi-manned mixed-model assembly lines with walking workers," International Journal of Production Economics, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:27:y:2021:i:1:d:10.1007_s10732-021-09473-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.