IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v26y2020i4d10.1007_s10732-020-09440-2.html
   My bibliography  Save this article

New heuristic algorithms for the Dubins traveling salesman problem

Author

Listed:
  • Luitpold Babel

    (Universität der Bundeswehr, München)

Abstract

The problem of finding a shortest curvature-constrained closed path through a set of targets in the plane is known as Dubins traveling salesman problem (DTSP). Applications of the DTSP include motion planning for kinematically constrained mobile robots and unmanned fixed-wing aerial vehicles. The difficulty of the DTSP is to simultaneously find an order of the targets and suitable headings (orientation angles) of the vehicle when passing the targets. Since the DTSP is known to be NP-hard there is a need for heuristic algorithms providing good quality solutions in reasonable time. Inspired by standard methods for the TSP we present a collection of such heuristics adapted to the DTSP. The algorithms are based on a technique that optimizes the headings of the targets of an open or closed subtour with given order. This is done by discretizing the headings, constructing an auxiliary network and computing a shortest path in the network. The first algorithm for the DTSP uses the order of the targets obtained from the solution of the Euclidean TSP. A second class of algorithms extends an open subtour by successively adding a new target and closes the tour if all targets have been added. A third class of algorithms starts with a closed subtour consisting of few targets and successively inserts a new target into the tour. The individual algorithms differ by the number of headings to be optimized in each iteration. Extensive simulation results show that the proposed methods are competitive with state-of-the-art methods for the DTSP concerning performance and superior concerning running time, which makes them applicable also to large-scale scenarios.

Suggested Citation

  • Luitpold Babel, 2020. "New heuristic algorithms for the Dubins traveling salesman problem," Journal of Heuristics, Springer, vol. 26(4), pages 503-530, August.
  • Handle: RePEc:spr:joheur:v:26:y:2020:i:4:d:10.1007_s10732-020-09440-2
    DOI: 10.1007/s10732-020-09440-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-020-09440-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-020-09440-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    2. Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
    3. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    4. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    5. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    6. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    7. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    8. Mengtang Li & Guoku Jia & Xun Li & Hao Qiu, 2023. "Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    9. Bektaş, Tolga, 2012. "Formulations and Benders decomposition algorithms for multidepot salesmen problems with load balancing," European Journal of Operational Research, Elsevier, vol. 216(1), pages 83-93.
    10. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    11. del Castillo, Jose M., 1998. "A heuristic for the traveling salesman problem based on a continuous approximation," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 123-152, April.
    12. Tatiana Bassetto & Francesco Mason, 2007. "The 2-period balanced traveling salesman problem," Working Papers 154, Department of Applied Mathematics, Università Ca' Foscari Venezia, revised Oct 2007.
    13. Chen, Xi, 2018. "When does store consolidation lead to higher emissions?," International Journal of Production Economics, Elsevier, vol. 202(C), pages 109-122.
    14. Pages, Laia & Jayakrishnan, R. & Cortes, Cristian E., 2005. "Real-Time Mass Passenger Transport Network Optimization Problems," University of California Transportation Center, Working Papers qt7w88d089, University of California Transportation Center.
    15. Renaud, Jacques & Boctor, Fayez F., 2002. "A sweep-based algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 140(3), pages 618-628, August.
    16. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.
    17. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    18. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    19. Chen, Thomas Ying-Jeh & Guikema, Seth David & Daly, Craig Michael, 2019. "Optimal pipe inspection paths considering inspection tool limitations," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 156-166.
    20. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:26:y:2020:i:4:d:10.1007_s10732-020-09440-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.