IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v25y2019i4d10.1007_s10732-017-9358-5.html
   My bibliography  Save this article

Iterated backtrack removal search for finding k-vertex-critical subgraphs

Author

Listed:
  • Wen Sun

    (Université d’Angers)

  • Jin-Kao Hao

    (Université d’Angers
    Institut Universitaire de France)

  • Alexandre Caminada

    (UTBM)

Abstract

Given an undirected graph $$G = (V,E)$$ G = ( V , E ) and a positive integer k, a k-vertex-critical subgraph (k-VCS) of G is a subgraph H such that its chromatic number equals k (i.e., $$\chi (H) = k$$ χ ( H ) = k ), and removing any vertex causes a decrease of $$\chi (H)$$ χ ( H ) . The k-VCS problem (k-VCSP) is to find the smallest k-vertex-critical subgraph $$H^*$$ H ∗ of G. This paper proposes an iterated backtrack-based removal (IBR) heuristic to find k-VCS for a given graph G. IBR extends the popular removal strategy that is intensification-oriented. The proposed extensions include two new diversification-oriented search components—a backtracking mechanism to reconsider some removed vertices and a perturbation strategy to escape local optima traps. Computational results on 80 benchmark graphs show that IBR is very competitive in terms of solution quality and run-time efficiency compared with state-of-the-art algorithms in the literature. Specifically, IBR improves the best-known solutions for 9 graphs and matches the best results for other 70 instances. We investigate the interest of the key components of the proposed algorithm.

Suggested Citation

  • Wen Sun & Jin-Kao Hao & Alexandre Caminada, 2019. "Iterated backtrack removal search for finding k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 25(4), pages 565-590, October.
  • Handle: RePEc:spr:joheur:v:25:y:2019:i:4:d:10.1007_s10732-017-9358-5
    DOI: 10.1007/s10732-017-9358-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-017-9358-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-017-9358-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    2. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    3. van Loon, J. N. M., 1981. "Irreducibly inconsistent systems of linear inequalities," European Journal of Operational Research, Elsevier, vol. 8(3), pages 283-288, November.
    4. Chakravarti, Nilotpal, 1994. "Some results concerning post-infeasibility analysis," European Journal of Operational Research, Elsevier, vol. 73(1), pages 139-143, February.
    5. Christian Desrosiers & Philippe Galinier & Alain Hertz & Sandrine Paroz, 2009. "Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 124-150, August.
    6. Philippe Galinier & Jin-Kao Hao, 1999. "Hybrid Evolutionary Algorithms for Graph Coloring," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 379-397, December.
    7. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    8. John W. Chinneck & Erik W. Dravnieks, 1991. "Locating Minimal Infeasible Constraint Sets in Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 3(2), pages 157-168, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Haase, Knut, 1993. "Sequential-analysis-based randomized-regret-methods for lotsizing and scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 323, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Dimitris Fouskakis & David Draper, 2002. "Stochastic Optimization: a Review," International Statistical Review, International Statistical Institute, vol. 70(3), pages 315-349, December.
    3. Drexl, Andreas & Juretzka, Jan & Salewski, Frank, 1993. "Academic course scheduling under workload and changeover constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 337, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    5. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    6. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    7. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    8. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    9. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    10. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    11. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    12. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    13. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    14. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    15. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    16. Daniel O’Malley & Velimir V Vesselinov & Boian S Alexandrov & Ludmil B Alexandrov, 2018. "Nonnegative/Binary matrix factorization with a D-Wave quantum annealer," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
    17. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    18. C-H Lan & C-C Chen, 2007. "Optimal purchase of two-itemized drugs for a disease," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 309-316, March.
    19. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    20. Sadan Kulturel-Konak & Bryan A. Norman & David W. Coit & Alice E. Smith, 2004. "Exploiting Tabu Search Memory in Constrained Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 241-254, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:4:d:10.1007_s10732-017-9358-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.