IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v78y2024i2d10.1007_s00199-024-01553-0.html
   My bibliography  Save this article

Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent preferences, without free disposal, and with an infinite-dimensional commodity space

Author

Listed:
  • Konrad Podczeck

    (Universität Wien)

  • Nicholas C. Yannelis

    (The University of Iowa)

Abstract

A new proof of the existence of a Walrasian equilibrium with an infinite dimensional commodity space is provided, which allows agents’ preferences to be discontinuous. The new theorems include as corollaries the existence results of Mas-Collel, Yannelis and Zame, Araujo and Monteiro, and Mas-Collel and Richard, among others.

Suggested Citation

  • Konrad Podczeck & Nicholas C. Yannelis, 2024. "Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent preferences, without free disposal, and with an infinite-dimensional commodity space," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 389-401, September.
  • Handle: RePEc:spr:joecth:v:78:y:2024:i:2:d:10.1007_s00199-024-01553-0
    DOI: 10.1007/s00199-024-01553-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00199-024-01553-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00199-024-01553-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gale, D. & Mas-Colell, A., 1975. "An equilibrium existence theorem for a general model without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(1), pages 9-15, March.
    2. Robert M. Anderson & Haosui Duanmu & M. Ali Khan & Metin Uyanik, 2022. "Walrasian equilibrium theory with and without free-disposal: theorems and counterexamples in an infinite-agent context," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 387-412, April.
    3. Aliprantis, Charalambos D. & Brown, Donald J., 1983. "Equilibria in markets with a Riesz space of commodities," Journal of Mathematical Economics, Elsevier, vol. 11(2), pages 189-207, April.
    4. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    5. Yannelis, Nicholas C. & Zame, William R., 1986. "Equilibria in Banach lattices without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 15(2), pages 85-110, April.
    6. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 1-26.
    7. Shafer, Wayne J., 1976. "Equilibrium in economies without ordered preferences or free disposal," Journal of Mathematical Economics, Elsevier, vol. 3(2), pages 135-137, July.
    8. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    9. Podczeck, Konrad, 1996. "Equilibria in vector lattices without ordered preferences or uniform properness," Journal of Mathematical Economics, Elsevier, vol. 25(4), pages 465-485.
    10. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, II: Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 27-41.
    11. Mas-Colell, Andreu, 1986. "The Price Equilibrium Existence Problem in Topological Vector Lattice s," Econometrica, Econometric Society, vol. 54(5), pages 1039-1053, September.
    12. BEWLEY, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," LIDAM Reprints CORE 122, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei He & Nicholas C. Yannelis, 2016. "Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 497-513, March.
    2. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    3. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2001. "A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices," Journal of Economic Theory, Elsevier, vol. 100(1), pages 22-72, September.
    4. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    5. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    6. Jean-Marc Bonnisseau & Matías Fuentes, 2020. "Market Failures and Equilibria in Banach Lattices: New Tangent and Normal Cones," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 338-367, February.
    7. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2000. "Cone Conditions in General Equilibrium Theory," Journal of Economic Theory, Elsevier, vol. 92(1), pages 96-121, May.
    8. Konrad Podczeck & Nicholas C. Yannelis, 2022. "Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences, without free disposal, and without compact consumption sets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 413-420, April.
    9. Carlos Hervés-Beloso & V. Martins-da-Rocha & Paulo Monteiro, 2009. "Equilibrium theory with asymmetric information and infinitely many states," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 295-320, February.
    10. Foivos Xanthos, 2014. "Non-existence of weakly Pareto optimal allocations," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(2), pages 137-146, October.
    11. Allison, Blake A. & Bagh, Adib & Lepore, Jason J., 2018. "Sufficient conditions for weak reciprocal upper semi-continuity in mixed extensions of games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 99-107.
    12. Oriol Carbonell-Nicolau & Richard McLean, 2013. "Approximation results for discontinuous games with an application to equilibrium refinement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 1-26, September.
    13. Tourky, Rabee, 1999. "Production equilibria in locally proper economies with unbounded and unordered consumers," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 303-315, November.
    14. Ghislain Herman Demeze-Jouatsa & Roland Pongou & Jean-Baptiste Tondji, 2024. "Justice, inclusion, and incentives," Journal of Theoretical Politics, , vol. 36(2), pages 101-131, April.
    15. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    16. Aliprantis, C. D. & Tourky, R. & Yannelis, N. C., 2000. "The Riesz-Kantorovich formula and general equilibrium theory," Journal of Mathematical Economics, Elsevier, vol. 34(1), pages 55-76, August.
    17. Allison, Blake A. & Bagh, Adib & Lepore, Jason J., 2022. "Invariant equilibria and classes of equivalent games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 448-462.
    18. Podczeck, Konrad & Yannelis, Nicholas C., 2008. "Equilibrium theory with asymmetric information and with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 141(1), pages 152-183, July.
    19. Scalzo, Vincenzo, 2020. "Doubly Strong Equilibrium," MPRA Paper 99329, University Library of Munich, Germany.
    20. Abramovich, Y A & Aliprantis, C D & Zame, W R, 1995. "A Representation Theorem for Riesz Spaces and Its Applications to Economics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 527-535, May.

    More about this item

    Keywords

    Continuous inclusion property; Exchange economy; Infinite-dimensional commodity space; Existence of Walrasian equilibrium;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies
    • D62 - Microeconomics - - Welfare Economics - - - Externalities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:78:y:2024:i:2:d:10.1007_s00199-024-01553-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.