IDEAS home Printed from https://ideas.repec.org/a/spr/etbull/v2y2014i2d10.1007_s40505-014-0044-6.html
   My bibliography  Save this article

Non-existence of weakly Pareto optimal allocations

Author

Listed:
  • Foivos Xanthos

    (University of Alberta)

Abstract

In this paper, we improve a characterization of the Riesz decomposition property, obtained in Aliprantis et al. (J Math Econ 92:55–76, 2000). As an application of this result, we show that the existence of weakly Pareto optimal allocations in some economic models is equivalent to the finite dimensional nature of the commodity space. This result enables us to give a characterization of infinite dimensional $$C(K)$$ C ( K ) spaces in terms of general equilibrium theory.

Suggested Citation

  • Foivos Xanthos, 2014. "Non-existence of weakly Pareto optimal allocations," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(2), pages 137-146, October.
  • Handle: RePEc:spr:etbull:v:2:y:2014:i:2:d:10.1007_s40505-014-0044-6
    DOI: 10.1007/s40505-014-0044-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40505-014-0044-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40505-014-0044-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aliprantis, Charalambos D. & Brown, Donald J., 1983. "Equilibria in markets with a Riesz space of commodities," Journal of Mathematical Economics, Elsevier, vol. 11(2), pages 189-207, April.
    2. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2004. "General equilibrium analysis in ordered topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 247-269, June.
    3. Mas-Colell, Andreu & Richard, Scott F., 1991. "A new approach to the existence of equilibria in vector lattices," Journal of Economic Theory, Elsevier, vol. 53(1), pages 1-11, February.
    4. Podczeck, Konrad, 1996. "Equilibria in vector lattices without ordered preferences or uniform properness," Journal of Mathematical Economics, Elsevier, vol. 25(4), pages 465-485.
    5. Mas-Colell, Andreu, 1986. "The Price Equilibrium Existence Problem in Topological Vector Lattice s," Econometrica, Econometric Society, vol. 54(5), pages 1039-1053, September.
    6. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    7. Yannelis, Nicholas C. & Zame, William R., 1986. "Equilibria in Banach lattices without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 15(2), pages 85-110, April.
    8. Aliprantis, C. D. & Burkinshaw, O. & Brown, D. J., 1987. "An economy with infinite dimensional commodity space and empty core," Economics Letters, Elsevier, vol. 23(1), pages 1-4.
    9. Bewley, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 4(3), pages 514-540, June.
    10. BEWLEY, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," LIDAM Reprints CORE 122, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    12. Nizar Allouch & Monique Florenzano, 2004. "Edgeworth and Walras equilibria of an arbitrage-free exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(2), pages 353-370, January.
    13. Aliprantis, C. D. & Tourky, R. & Yannelis, N. C., 2000. "The Riesz-Kantorovich formula and general equilibrium theory," Journal of Mathematical Economics, Elsevier, vol. 34(1), pages 55-76, August.
    14. Araujo, Aloisio, 1985. "Lack of Pareto Optimal Allocations in Economies with Infinitely Many Commodities: The Need for Impatience," Econometrica, Econometric Society, vol. 53(2), pages 455-461, March.
    15. Larry E. Jones, 1984. "Special Problems Arising in the Study of Economies with Infinitely Many Commodities," Discussion Papers 596, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xanthos, Foivos, 2014. "A note on the equilibrium theory of economies with asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 1-3.
    2. Basile, Achille & Graziano, Maria Gabriella & Papadaki, Maria & Polyrakis, Ioannis A., 2017. "Cones with semi-interior points and equilibrium," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 36-48.
    3. Maurizio Chicco & Anna Rossi, 2015. "Existence of Optimal Points Via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 487-501, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    2. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2001. "A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices," Journal of Economic Theory, Elsevier, vol. 100(1), pages 22-72, September.
    3. Carlos Hervés-Beloso & V. Martins-da-Rocha & Paulo Monteiro, 2009. "Equilibrium theory with asymmetric information and infinitely many states," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 295-320, February.
    4. Jean-Marc Bonnisseau & Matías Fuentes, 2020. "Market Failures and Equilibria in Banach Lattices: New Tangent and Normal Cones," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 338-367, February.
    5. Monique Florenzano & Valeri Marakulin, 2000. "Production Equilibria in Vector Lattices," Econometric Society World Congress 2000 Contributed Papers 1396, Econometric Society.
    6. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    7. Aliprantis, Charalambos D. & Border, Kim C. & Burkinshaw, Owen, 1997. "Economies with Many Commodities," Journal of Economic Theory, Elsevier, vol. 74(1), pages 62-105, May.
    8. Aliprantis, C. D. & Tourky, R. & Yannelis, N. C., 2000. "The Riesz-Kantorovich formula and general equilibrium theory," Journal of Mathematical Economics, Elsevier, vol. 34(1), pages 55-76, August.
    9. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2006. "Production equilibria," Journal of Mathematical Economics, Elsevier, vol. 42(4-5), pages 406-421, August.
    10. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2004. "General equilibrium analysis in ordered topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 247-269, June.
    11. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2000. "Cone Conditions in General Equilibrium Theory," Journal of Economic Theory, Elsevier, vol. 92(1), pages 96-121, May.
    12. Messaoud Deghdak & Monique Florenzano, 1999. "Decentralizing Edgeworth equilibria in economies with many commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 14(2), pages 297-310.
    13. Charalambos D. Aliprantis & Monique Florenzano & Rabee Tourky, 2004. "Equilibria in production economies," Cahiers de la Maison des Sciences Economiques b04116, Université Panthéon-Sorbonne (Paris 1).
    14. Achille Basile & Maria Gabriella Graziano, 2012. "Core Equivalences for Equilibria Supported by Non-linear Prices," CSEF Working Papers 309, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    15. Abramovich, Y A & Aliprantis, C D & Zame, W R, 1995. "A Representation Theorem for Riesz Spaces and Its Applications to Economics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 527-535, May.
    16. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2005. "Linear and non-linear price decentralization," Journal of Economic Theory, Elsevier, vol. 121(1), pages 51-74, March.
    17. Basile, Achille & Graziano, Maria Gabriella & Papadaki, Maria & Polyrakis, Ioannis A., 2017. "Cones with semi-interior points and equilibrium," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 36-48.
    18. Tourky, Rabee, 1999. "Production equilibria in locally proper economies with unbounded and unordered consumers," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 303-315, November.
    19. Martins-da-Rocha, V. Filipe & Riedel, Frank, 2010. "On equilibrium prices in continuous time," Journal of Economic Theory, Elsevier, vol. 145(3), pages 1086-1112, May.
    20. Podczeck, Konrad, 1996. "Equilibria in vector lattices without ordered preferences or uniform properness," Journal of Mathematical Economics, Elsevier, vol. 25(4), pages 465-485.

    More about this item

    Keywords

    General equilibrium theory; Infinite dimensional commodity spaces; Pareto optimality; Riesz decomposition property;
    All these keywords.

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:etbull:v:2:y:2014:i:2:d:10.1007_s40505-014-0044-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.