IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1396.html
   My bibliography  Save this paper

Production Equilibria in Vector Lattices

Author

Listed:
  • Monique Florenzano

    (Universite Paris 1)

  • Valeri Marakulin

    (Russian Academy of Sciences)

Abstract

The general purpose of this paper is to prove quasiequilibrium existence theorems for production economies with general consumption sets in an infinite dimensional commodity space, without assuming any monotonicity of preferences or free-disposal in production. The commodity space is a vector lattice commodity space whose topological dual is a sublattice of its order dual. We formulate two kinds of properness concepts for agents' preferences and production sets, which reduce to more classical ones when the commodity space is locally convex and the consumption sets coincide with the positive cone. Assuming properness allows for extension theorems of quasiequilibrium prices obtained for the economy restricted to some order ideal of the commodity space. As an application, the existence of quasiequilibrium in the whole economy is proved without any assumption of monotonicity of preferences or free-disposal in production.

Suggested Citation

  • Monique Florenzano & Valeri Marakulin, 2000. "Production Equilibria in Vector Lattices," Econometric Society World Congress 2000 Contributed Papers 1396, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1396
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1396.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Back, Kerry, 1988. "Structure of consumption sets and existence of equilibria in infinite-dimensional spaces," Journal of Mathematical Economics, Elsevier, vol. 17(1), pages 89-99, February.
    2. Tourky, Rabee, 1999. "Production equilibria in locally proper economies with unbounded and unordered consumers," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 303-315, November.
    3. Duffie, Darrell & Zame, William, 1989. "The Consumption-Based Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 57(6), pages 1279-1297, November.
    4. Boyd, John H, III & McKenzie, Lionel W, 1993. "The Existence of Competitive Equilibrium over an Infinite Horizon with Production and General Consumption Sets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 34(1), pages 1-20, February.
    5. Aliprantis, C.D. & R. & Tourky & Yannelis, N.C., 1998. "A Theory of Value With Auction Prices," Department of Economics - Working Papers Series 670, The University of Melbourne.
    6. Aliprantis, Charalambos D. & Brown, Donald J. & Burkinshaw, Owen, 1987. "Edgeworth equilibria in production economies," Journal of Economic Theory, Elsevier, vol. 43(2), pages 252-291, December.
    7. Aliprantis, C. D. & Tourky, R. & Yannelis, N. C., 2000. "The Riesz-Kantorovich formula and general equilibrium theory," Journal of Mathematical Economics, Elsevier, vol. 34(1), pages 55-76, August.
    8. Aliprantis, Charalambos D. & Brown, Donald J., 1983. "Equilibria in markets with a Riesz space of commodities," Journal of Mathematical Economics, Elsevier, vol. 11(2), pages 189-207, April.
    9. Aliprantis, Charalambos D & Brown, Donald J & Burkinshaw, Owen, 1987. "Edgeworth Equilibria," Econometrica, Econometric Society, vol. 55(5), pages 1109-1137, September.
    10. Messaoud Deghdak & Monique Florenzano, 1999. "Decentralizing Edgeworth equilibria in economies with many commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 14(2), pages 297-310.
    11. Tourky, Rabee, 1998. "A New Approach to the Limit Theorem on the Core of an Economy in Vector Lattices," Journal of Economic Theory, Elsevier, vol. 78(2), pages 321-328, February.
    12. Jones, Larry E, 1984. "A Competitive Model of Commodity Differentiation," Econometrica, Econometric Society, vol. 52(2), pages 507-530, March.
    13. Zame, William R, 1987. "Competitive Equilibria in Production Economies with an Infinite-Dimensional Commodity Space," Econometrica, Econometric Society, vol. 55(5), pages 1075-1108, September.
    14. Mas-Colell, Andreu & Richard, Scott F., 1991. "A new approach to the existence of equilibria in vector lattices," Journal of Economic Theory, Elsevier, vol. 53(1), pages 1-11, February.
    15. Marakulin, Valeri M., 1998. "Production equilibria in vector lattices with unordered preferences : an approach using finite-dimensional approximations," CEPREMAP Working Papers (Couverture Orange) 9821, CEPREMAP.
    16. Mas-Colell, Andreu & Zame, William R., 1991. "Equilibrium theory in infinite dimensional spaces," Handbook of Mathematical Economics, in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 34, pages 1835-1898, Elsevier.
    17. Araujo, A. & Monteiro, P. K., 1989. "Equilibrium without uniform conditions," Journal of Economic Theory, Elsevier, vol. 48(2), pages 416-427, August.
    18. Podczeck, Konrad, 1996. "Equilibria in vector lattices without ordered preferences or uniform properness," Journal of Mathematical Economics, Elsevier, vol. 25(4), pages 465-485.
    19. Bewley, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 4(3), pages 514-540, June.
    20. Aliprantis, Charalambos D., 1997. "On the Mas-Colell-Richard Equilibrium Theorem," Journal of Economic Theory, Elsevier, vol. 74(2), pages 414-424, June.
    21. Mas-Colell, Andreu, 1986. "The Price Equilibrium Existence Problem in Topological Vector Lattice s," Econometrica, Econometric Society, vol. 54(5), pages 1039-1053, September.
    22. BEWLEY, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," LIDAM Reprints CORE 122, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2005. "Linear and non-linear price decentralization," Journal of Economic Theory, Elsevier, vol. 121(1), pages 51-74, March.
    2. Nizar Allouch & Monique Florenzano, 2004. "Edgeworth and Walras equilibria of an arbitrage-free exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(2), pages 353-370, January.
    3. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2004. "General equilibrium analysis in ordered topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 247-269, June.
    4. Marakulin, V., 2011. "Contracts and Domination in Competitive Economies," Journal of the New Economic Association, New Economic Association, issue 9, pages 10-32.
    5. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2006. "Production equilibria," Journal of Mathematical Economics, Elsevier, vol. 42(4-5), pages 406-421, August.
    6. Achille Basile & Maria Gabriella Graziano, 2012. "Core Equivalences for Equilibria Supported by Non-linear Prices," CSEF Working Papers 309, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    7. Bogdan Klishchuk, 2018. "Multiple markets: new perspective on nonlinear pricing," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 525-545, August.
    8. Aliprantis, Charalambos D. & Monteiro, Paulo K. & Tourky, Rabee, 2004. "Non-marketed options, non-existence of equilibria, and non-linear prices," Journal of Economic Theory, Elsevier, vol. 114(2), pages 345-357, February.
    9. Charalambos D. Aliprantis & Monique Florenzano & Rabee Tourky, 2004. "Equilibria in production economies," Cahiers de la Maison des Sciences Economiques b04116, Université Panthéon-Sorbonne (Paris 1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    2. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2001. "A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices," Journal of Economic Theory, Elsevier, vol. 100(1), pages 22-72, September.
    3. Martins-da-Rocha, V. Filipe & Riedel, Frank, 2010. "On equilibrium prices in continuous time," Journal of Economic Theory, Elsevier, vol. 145(3), pages 1086-1112, May.
    4. Abramovich, Y A & Aliprantis, C D & Zame, W R, 1995. "A Representation Theorem for Riesz Spaces and Its Applications to Economics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 527-535, May.
    5. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2000. "Cone Conditions in General Equilibrium Theory," Journal of Economic Theory, Elsevier, vol. 92(1), pages 96-121, May.
    6. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2005. "Linear and non-linear price decentralization," Journal of Economic Theory, Elsevier, vol. 121(1), pages 51-74, March.
    7. Tourky, Rabee, 1999. "Production equilibria in locally proper economies with unbounded and unordered consumers," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 303-315, November.
    8. Podczeck, Konrad, 1996. "Equilibria in vector lattices without ordered preferences or uniform properness," Journal of Mathematical Economics, Elsevier, vol. 25(4), pages 465-485.
    9. Carlos Hervés-Beloso & V. Martins-da-Rocha & Paulo Monteiro, 2009. "Equilibrium theory with asymmetric information and infinitely many states," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 295-320, February.
    10. Aliprantis, C. D. & Tourky, R. & Yannelis, N. C., 2000. "The Riesz-Kantorovich formula and general equilibrium theory," Journal of Mathematical Economics, Elsevier, vol. 34(1), pages 55-76, August.
    11. Aliprantis, Charalambos D. & Monteiro, Paulo K. & Tourky, Rabee, 2004. "Non-marketed options, non-existence of equilibria, and non-linear prices," Journal of Economic Theory, Elsevier, vol. 114(2), pages 345-357, February.
    12. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2004. "General equilibrium analysis in ordered topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 247-269, June.
    13. Aliprantis, Charalambos D. & Border, Kim C. & Burkinshaw, Owen, 1997. "Economies with Many Commodities," Journal of Economic Theory, Elsevier, vol. 74(1), pages 62-105, May.
    14. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2006. "Production equilibria," Journal of Mathematical Economics, Elsevier, vol. 42(4-5), pages 406-421, August.
    15. Messaoud Deghdak & Monique Florenzano, 1999. "Decentralizing Edgeworth equilibria in economies with many commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 14(2), pages 297-310.
    16. Charalambos D. Aliprantis & Monique Florenzano & Rabee Tourky, 2004. "Equilibria in production economies," Cahiers de la Maison des Sciences Economiques b04116, Université Panthéon-Sorbonne (Paris 1).
    17. Aliprantis, Charalambos D., 1997. "Separable utility functions," Journal of Mathematical Economics, Elsevier, vol. 28(4), pages 415-444, November.
    18. Charalambos Aliprantis & Rabee Tourky, 2009. "Equilibria in incomplete assets economies with infinite dimensional spot markets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 221-262, February.
    19. Jean-Marc Bonnisseau & Matías Fuentes, 2020. "Market Failures and Equilibria in Banach Lattices: New Tangent and Normal Cones," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 338-367, February.
    20. Tourky, Rabee, 1998. "A New Approach to the Limit Theorem on the Core of an Economy in Vector Lattices," Journal of Economic Theory, Elsevier, vol. 78(2), pages 321-328, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.