IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i1d10.1007_s13132-023-01284-y.html
   My bibliography  Save this article

Impact of Innovation in Solar Photovoltaic Energy Generation, Distribution, or Transmission-Related Technologies on Carbon Dioxide Emissions in China

Author

Listed:
  • Chengde You

    (Jimei University)

  • Shoukat Iqbal Khattak

    (Jimei University)

  • Manzoor Ahmad

    (Abdul wali Khan University)

Abstract

This study contributes significantly to existing literature by examining the link between innovation in photovoltaic energy generation, distribution, and transmission technologies and CO2 emissions, with international collaboration in green technology development, gross domestic product per capita, financial development, and renewable energy consumption in China from 1990Q1 to 2018Q4. First, the findings indicated that the international collaboration in green technology development enabled China to jointly develop a new green technology that not only improves the efficiency of energy technologies but also contributes to CO2 emission mitigation. Second, the findings suggested that the innovation in photovoltaic energy generation, distribution, and transmission technologies has a significant impact on enhancing environmental quality. Third, an increase in renewable energy consumption was negatively associated with CO2 emissions, while an upsurge in gross domestic product per capita was positively associated with CO2 emissions. Lastly, the results inferred that an increase in financial development led to a reduction in CO2 emissions. This paper suggests that the government should change its policies to encourage private investors to put their money into innovation in photovoltaic energy generation, distribution, and transmission technologies to promote eco-friendly energy production, consumption, and ecological sustainability for future generations.

Suggested Citation

  • Chengde You & Shoukat Iqbal Khattak & Manzoor Ahmad, 2024. "Impact of Innovation in Solar Photovoltaic Energy Generation, Distribution, or Transmission-Related Technologies on Carbon Dioxide Emissions in China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 3600-3634, March.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:1:d:10.1007_s13132-023-01284-y
    DOI: 10.1007/s13132-023-01284-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-023-01284-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-023-01284-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Christian Bayer & Christoph Hanck, 2013. "Combining non-cointegration tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 83-95, January.
    4. Dong‐Shang Chang & Li‐Ting Yeh & Yong‐fu Chen, 2014. "The Effects of Economic Development, International Trade, Industrial Structure and Energy Demands on Sustainable Development," Sustainable Development, John Wiley & Sons, Ltd., vol. 22(6), pages 377-390, November.
    5. Cole, Matthew A. & Elliott, Robert J.R. & Okubo, Toshihiro & Zhou, Ying, 2013. "The carbon dioxide emissions of firms: A spatial analysis," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 290-309.
    6. Jiang Qingquan & Shoukat Iqbal Khattak & Manzoor Ahmad & Lin Ping, 2020. "A new approach to environmental sustainability: Assessing the impact of monetary policy on CO2 emissions in Asian economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1331-1346, September.
    7. Mohsin Shahzad & Ying Qu & Abaid Ullah Zafar & Andrea Appolloni, 2021. "Does the interaction between the knowledge management process and sustainable development practices boost corporate green innovation?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 4206-4222, December.
    8. Tajudeen, Ibrahim A. & Wossink, Ada & Banerjee, Prasenjit, 2018. "How significant is energy efficiency to mitigate CO2 emissions? Evidence from OECD countries," Energy Economics, Elsevier, vol. 72(C), pages 200-221.
    9. Maki, Daiki, 2012. "Tests for cointegration allowing for an unknown number of breaks," Economic Modelling, Elsevier, vol. 29(5), pages 2011-2015.
    10. Fethi, Sami & Rahuma, Abdulhamid, 2020. "The impact of eco-innovation on CO2 emission reductions: Evidence from selected petroleum companies," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 108-115.
    11. Peter Boswijk, H., 1994. "Testing for an unstable root in conditional and structural error correction models," Journal of Econometrics, Elsevier, vol. 63(1), pages 37-60, July.
    12. Paresh Kumar Narayan & Stephan Popp, 2010. "A new unit root test with two structural breaks in level and slope at unknown time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1425-1438.
    13. Cheng Jin & Asif Razzaq & Faiza Saleem & Avik Sinha, 2022. "Asymmetric effects of eco-innovation and human capital development in realizing environmental sustainability in China: evidence from quantile ARDL framework," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 4947-4970, December.
    14. Andrea Appolloni & Idiano D'Adamo & Massimo Gastaldi & Morteza Yazdani & Davide Settembre-Blundo, 2021. "Reflective backward analysis to assess the operational performance and eco-efficiency of two industrial districts," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 72(6), pages 1608-1626, December.
    15. Shahbaz, Muhammad & Raghutla, Chandrashekar & Song, Malin & Zameer, Hashim & Jiao, Zhilun, 2020. "Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China," Energy Economics, Elsevier, vol. 86(C).
    16. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    17. Huang, Junbing & Liu, Qiang & Cai, Xiaochen & Hao, Yu & Lei, Hongyan, 2018. "The effect of technological factors on China's carbon intensity: New evidence from a panel threshold model," Energy Policy, Elsevier, vol. 115(C), pages 32-42.
    18. repec:cup:cbooks:9781108479110 is not listed on IDEAS
    19. Jaeho Shin & Changhee Kim & Hongsuk Yang, 2018. "The Effect of Sustainability as Innovation Objectives on Innovation Efficiency," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
    20. Zeeshan Khan & Muhsin Ali & Dervis Kirikkaleli & Salman Wahab & Zhilun Jiao, 2020. "The impact of technological innovation and public‐private partnership investment on sustainable environment in China: Consumption‐based carbon emissions analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1317-1330, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liguo, Xin & Ahmad, Manzoor & Khattak, Shoukat Iqbal, 2022. "Impact of innovation in marine energy generation, distribution, or transmission-related technologies on carbon dioxide emissions in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Xia, Wanjun & Murshed, Muntasir & Khan, Zeeshan & Chen, Zhenling & Ferraz, Diogo, 2022. "Exploring the nexus between fiscal decentralization and energy poverty for China: Does country risk matter for energy poverty reduction?," Energy, Elsevier, vol. 255(C).
    3. Faisal Faisal & Ruqiya Pervaiz & Nesrin Ozatac & Turgut Tursoy, 2021. "Exploring the relationship between carbon dioxide emissions, urbanisation and financial deepening for Turkey using the symmetric and asymmetric causality approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17374-17402, December.
    4. Muntasir Murshed & Mohamed Elheddad & Rizwan Ahmed & Mohga Bassim & Ei Thuzar Than, 2022. "Foreign Direct Investments, Renewable Electricity Output, and Ecological Footprints: Do Financial Globalization Facilitate Renewable Energy Transition and Environmental Welfare in Bangladesh?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 33-78, March.
    5. Li Chunling & Javed Ahmed Memon & Tiep Le Thanh & Minhaj Ali & Dervis Kirikkaleli, 2021. "The Impact of Public-Private Partnership Investment in Energy and Technological Innovation on Ecological Footprint: The Case of Pakistan," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    6. Zhang, Xiaofeng & Chen, Xinnan & Fang, Zheng & Zhu, Yujuan & Liang, Jiabo, 2022. "Investment in energy resources, natural resources and environment: Evidence from China," Resources Policy, Elsevier, vol. 76(C).
    7. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Camgöz, Mevlüt & Topal, Mehmet Hanefi, 2022. "Identifying the asymmetric price dynamics of Islamic equities: Implications for international investors," Research in International Business and Finance, Elsevier, vol. 60(C).
    9. Sahoo, Manoranjan & Babu, M. Suresh & Dash, Umakant, 2016. "Long run sustainability of current account balance of China and India: New evidence from combined cointegration test," MPRA Paper 79013, University Library of Munich, Germany, revised 2016.
    10. Ahmed Samour & Joshua Chukwuma Onwe & Nasiru Inuwa & Muhammad Imran, 2024. "Insurance market development, renewable energy, and environmental quality in the UAE: Novel findings from a bootstrap ARDL test," Energy & Environment, , vol. 35(2), pages 610-627, March.
    11. Devi Prasad DASH & Debi Prasad BAL & Manoranjan SAHOO, 2016. "Nexus between defense expenditure and economic growth in BRIC economies: An empirical investigation," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(606), S), pages 89-102, Spring.
    12. Ahmed Samour & Omar Ikbal Tawfik & Magdalena Radulescu & Cristina Florentina Baldan, 2023. "Do Oil Price, Renewable Energy, and Financial Development Matter for Environmental Quality in Oman? Novel Insights from Augmented ARDL Approach," Energies, MDPI, vol. 16(12), pages 1-14, June.
    13. Debi P Bal & Badri N Rath, 2019. "Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India - A Reassessment," Economics Bulletin, AccessEcon, vol. 39(1), pages 592-604.
    14. Shahbaz, Muhammad & Farhani, Sahbi & Ozturk, Ilhan, 2013. "Coal Consumption, Industrial Production and CO2 Emissions in China and India," MPRA Paper 50618, University Library of Munich, Germany, revised 12 Oct 2013.
    15. Samour, Ahmed & Shahzad, Umer & Mentel, Grzegorz, 2022. "Moving toward sustainable development: Assessing the impacts of taxation and banking development on renewable energy in the UAE," Renewable Energy, Elsevier, vol. 200(C), pages 706-713.
    16. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    17. Shahbaz, Muhammad & Khraief, Naceur & Jemaa, Mohamed Mekki Ben, 2015. "On the causal nexus of road transport CO2 emissions and macroeconomic variables in Tunisia: Evidence from combined cointegration tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 89-100.
    18. Farhani, Sahbi & Solarin, Sakiru Adebola, 2017. "Financial development and energy demand in the United States: New evidence from combined cointegration and asymmetric causality tests," Energy, Elsevier, vol. 134(C), pages 1029-1037.
    19. Manoranjan SAHOO & M Suresh BABU & Umakant DASH, 2016. "Current account sustainability in SAARC economies: Evidence from combined cointegration approach," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(609), W), pages 281-298, Winter.
    20. Sami Ur Rahman & Faisal Faisal & Fariha Sami & Adnan Ali & Rajnesh Chander & Muhammad Yusuf Amin, 2024. "Investigating the Nexus Between Inflation, Financial Development, and Carbon Emission: Empirical Evidence from FARDL and Frequency Domain Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 292-318, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:1:d:10.1007_s13132-023-01284-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.