IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v86y2023i2d10.1007_s10898-022-01257-6.html
   My bibliography  Save this article

A non-convex piecewise quadratic approximation of $$\ell _{0}$$ ℓ 0 regularization: theory and accelerated algorithm

Author

Listed:
  • Qian Li

    (Shanghai University of Engineering Science)

  • Wei Zhang

    (South China University of Technology)

  • Yanqin Bai

    (Shanghai University)

  • Guoqiang Wang

    (Shanghai University of Engineering Science)

Abstract

Non-convex regularization has been recognized as an especially important approach in recent studies to promote sparsity. In this paper, we study the non-convex piecewise quadratic approximation (PQA) regularization for sparse solutions of the linear inverse problem. It is shown that exact recovery of sparse signals and stable recovery of compressible signals are possible through local optimum of this regularization. After developing a thresholding representation theory for PQA regularization, we propose an iterative PQA thresholding algorithm (PQA algorithm) to solve this problem. The PQA algorithm converges to a local minimizer of the regularization, with an eventually linear convergence rate. Furthermore, we adopt the idea of accelerated gradient method to design the accelerated iterative PQA thresholding algorithm (APQA algorithm), which is also linearly convergent, but with a faster convergence rate. Finally, we carry out a series of numerical experiments to assess the performance of both algorithms for PQA regularization. The results show that PQA regularization outperforms $$\ell _1$$ ℓ 1 and $$\ell _{1/2}$$ ℓ 1 / 2 regularizations in terms of accuracy and sparsity, while the APQA algorithm is demonstrated to be significantly better than the PQA algorithm.

Suggested Citation

  • Qian Li & Wei Zhang & Yanqin Bai & Guoqiang Wang, 2023. "A non-convex piecewise quadratic approximation of $$\ell _{0}$$ ℓ 0 regularization: theory and accelerated algorithm," Journal of Global Optimization, Springer, vol. 86(2), pages 323-353, June.
  • Handle: RePEc:spr:jglopt:v:86:y:2023:i:2:d:10.1007_s10898-022-01257-6
    DOI: 10.1007/s10898-022-01257-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01257-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01257-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenfeng Jing & Deyu Meng & Chen Qiao & Zhiming Peng, 2011. "Eliminating Vertical Stripe Defects on Silicon Steel Surface by Regularization," Mathematical Problems in Engineering, Hindawi, vol. 2011, pages 1-13, December.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Dongdong Zhang & Shaohua Pan & Shujun Bi & Defeng Sun, 2023. "Zero-norm regularized problems: equivalent surrogates, proximal MM method and statistical error bound," Computational Optimization and Applications, Springer, vol. 86(2), pages 627-667, November.
    3. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    4. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    5. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    6. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    7. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    9. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    10. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    11. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    12. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    13. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    14. Linton, Oliver & Seo, Myung Hwan & Whang, Yoon-Jae, 2023. "Testing stochastic dominance with many conditioning variables," Journal of Econometrics, Elsevier, vol. 235(2), pages 507-527.
    15. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    16. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Michael Hintermüller & Tao Wu, 2014. "A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors," Computational Optimization and Applications, Springer, vol. 57(1), pages 1-25, January.
    18. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
    19. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    20. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:86:y:2023:i:2:d:10.1007_s10898-022-01257-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.