IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v77y2020i2d10.1007_s10898-019-00869-9.html
   My bibliography  Save this article

Linear conditioning, weak sharpness and finite convergence for equilibrium problems

Author

Listed:
  • Luong Nguyen

    (Hong Duc University)

  • Qamrul Hasan Ansari

    (Aligarh Muslim University
    King Fahd University of Petroleum and Minerals)

  • Xiaolong Qin

    (Hangzhou Normal University)

Abstract

The present paper first provides sufficient conditions and characterizations for linearly conditioned bifunction associated with an equilibrium problem. It then introduces the notion of weak sharp solution for equilibrium problems which is analogous to the linear conditioning notion. This new notion generalizes and unifies the notion of weak sharp minima for optimization problems as well as the notion of weak sharp solutions for variational inequality problems. Some sufficient conditions and characterizations of weak sharpness are also presented. Finally, we study the finite convergence property of sequences generated by some algorithms for solving equilibrium problems under linear conditioning and weak shapness assumptions. An upper bound of the number of iterations by which the sequence generated by proximal point algorithm converges to a solution of equilibrium problems is also given.

Suggested Citation

  • Luong Nguyen & Qamrul Hasan Ansari & Xiaolong Qin, 2020. "Linear conditioning, weak sharpness and finite convergence for equilibrium problems," Journal of Global Optimization, Springer, vol. 77(2), pages 405-424, June.
  • Handle: RePEc:spr:jglopt:v:77:y:2020:i:2:d:10.1007_s10898-019-00869-9
    DOI: 10.1007/s10898-019-00869-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00869-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00869-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
    2. Wu, Zili, 2018. "Characterizations of weakly sharp solutions for a variational inequality with a pseudomonotone mapping," European Journal of Operational Research, Elsevier, vol. 265(2), pages 448-453.
    3. Regina S. Burachik & Alfredo N. Iusem, 2008. "Set-Valued Mappings and Enlargements of Monotone Operators," Springer Optimization and Its Applications, Springer, number 978-0-387-69757-4, June.
    4. Regina S. Burachik & Alfredo N. Iusem, 2008. "Enlargements of Monotone Operators," Springer Optimization and Its Applications, in: Set-Valued Mappings and Enlargements of Monotone Operators, chapter 0, pages 161-220, Springer.
    5. Bigi, Giancarlo & Castellani, Marco & Pappalardo, Massimo & Passacantando, Mauro, 2013. "Existence and solution methods for equilibria," European Journal of Operational Research, Elsevier, vol. 227(1), pages 1-11.
    6. Suliman Al-Homidan & Qamrul Hasan Ansari & Luong Nguyen, 2017. "Weak Sharp Solutions for Nonsmooth Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 683-701, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Tan & Shanshan Xu & Songxiao Li, 2020. "Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems," Mathematics, MDPI, vol. 8(2), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    2. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    3. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    4. Sedi Bartz & Minh N. Dao & Hung M. Phan, 2022. "Conical averagedness and convergence analysis of fixed point algorithms," Journal of Global Optimization, Springer, vol. 82(2), pages 351-373, February.
    5. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    6. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    7. Warunun Inthakon & Suthep Suantai & Panitarn Sarnmeta & Dawan Chumpungam, 2020. "A New Machine Learning Algorithm Based on Optimization Method for Regression and Classification Problems," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    8. Juan Pablo Luna & Claudia Sagastizábal & Mikhail Solodov, 2020. "A class of Benders decomposition methods for variational inequalities," Computational Optimization and Applications, Springer, vol. 76(3), pages 935-959, July.
    9. Heinz H. Bauschke & Warren L. Hare & Walaa M. Moursi, 2016. "On the Range of the Douglas–Rachford Operator," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 884-897, August.
    10. Hsien-Chung Wu, 2018. "Near Fixed Point Theorems in Hyperspaces," Mathematics, MDPI, vol. 6(6), pages 1-15, May.
    11. Walaa M. Moursi, 2018. "The Forward–Backward Algorithm and the Normal Problem," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 605-624, March.
    12. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2022. "An Accelerated Convex Optimization Algorithm with Line Search and Applications in Machine Learning," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    13. Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
    14. Regina S. Burachik & Alfredo N. Iusem & Jefferson G. Melo, 2013. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 108-131, April.
    15. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    16. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    17. Rubén López, 2013. "Variational convergence for vector-valued functions and its applications to convex multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 1-34, August.
    18. Jonathan M. Borwein & Liangjin Yao, 2013. "Structure Theory for Maximally Monotone Operators with Points of Continuity," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 1-24, April.
    19. Ludovic Nagesseur, 2016. "A bundle method using two polyhedral approximations of the $$\varepsilon $$ ε -enlargement of a maximal monotone operator," Computational Optimization and Applications, Springer, vol. 64(1), pages 75-100, May.
    20. Edvaldo E. A. Batista & Glaydston de Carvalho Bento & Orizon P. Ferreira, 2016. "Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 916-931, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:77:y:2020:i:2:d:10.1007_s10898-019-00869-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.