IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v75y2019i1d10.1007_s10898-019-00768-z.html
   My bibliography  Save this article

Nonlinear biobjective optimization: improvements to interval branch & bound algorithms

Author

Listed:
  • Ignacio Araya

    (Pontificia Universidad Católica de Valparaíso)

  • Jose Campusano

    (Pontificia Universidad Católica de Valparaíso)

  • Damir Aliquintui

    (Pontificia Universidad Católica de Valparaíso)

Abstract

Interval based solvers are commonly used for solving single-objective nonlinear optimization problems. Their reliability and increasing performance make them useful when proofs of infeasibility and/or certification of solutions are a must. On the other hand, there exist only a few approaches dealing with nonlinear optimization problems, when they consider multiple objectives. In this paper, we propose a new interval branch & bound algorithm for solving nonlinear constrained biobjective optimization problems. Although the general strategy is based on other works, we propose some improvements related to the termination criteria, node selection, upperbounding and discarding boxes using the non-dominated set. Most of these techniques use and/or adapt components of IbexOpt, a state-of-the-art interval-based single-objective optimization algorithm. The code of our plugin can be found in our git repository ( https://github.com/INFPUCV/ibex-lib/tree/master/plugins/optim-mop ).

Suggested Citation

  • Ignacio Araya & Jose Campusano & Damir Aliquintui, 2019. "Nonlinear biobjective optimization: improvements to interval branch & bound algorithms," Journal of Global Optimization, Springer, vol. 75(1), pages 91-110, September.
  • Handle: RePEc:spr:jglopt:v:75:y:2019:i:1:d:10.1007_s10898-019-00768-z
    DOI: 10.1007/s10898-019-00768-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00768-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00768-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ignacio Araya & Bertrand Neveu, 2018. "lsmear: a variable selection strategy for interval branch and bound solvers," Journal of Global Optimization, Springer, vol. 71(3), pages 483-500, July.
    2. Martin, Benjamin & Goldsztejn, Alexandre & Granvilliers, Laurent & Jermann, Christophe, 2017. "Constraint propagation using dominance in interval Branch & Bound for nonlinear biobjective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 934-948.
    3. Alexandre Goldsztejn & Ferenc Domes & Brice Chevalier, 2014. "First order rejection tests for multiple-objective optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 653-672, April.
    4. Bertrand Neveu & Gilles Trombettoni & Ignacio Araya, 2016. "Node selection strategies in interval Branch and Bound algorithms," Journal of Global Optimization, Springer, vol. 64(2), pages 289-304, February.
    5. Benjamin Martin & Alexandre Goldsztejn & Laurent Granvilliers & Christophe Jermann, 2016. "On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach," Journal of Global Optimization, Springer, vol. 64(1), pages 3-16, January.
    6. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
    7. Ignacio Araya & Gilles Trombettoni & Bertrand Neveu & Gilles Chabert, 2014. "Upper bounding in inner regions for global optimization under inequality constraints," Journal of Global Optimization, Springer, vol. 60(2), pages 145-164, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ignacio Araya & Damir Aliquintui & Franco Ardiles & Braulio Lobo, 2021. "Nonlinear biobjective optimization: improving the upper envelope using feasible line segments," Journal of Global Optimization, Springer, vol. 79(2), pages 503-520, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Araya & Damir Aliquintui & Franco Ardiles & Braulio Lobo, 2021. "Nonlinear biobjective optimization: improving the upper envelope using feasible line segments," Journal of Global Optimization, Springer, vol. 79(2), pages 503-520, February.
    2. Charles Audet & Frédéric Messine & Jordan Ninin, 2022. "Numerical certification of Pareto optimality for biobjective nonlinear problems," Journal of Global Optimization, Springer, vol. 83(4), pages 891-908, August.
    3. Marendet, Antoine & Goldsztejn, Alexandre & Chabert, Gilles & Jermann, Christophe, 2020. "A standard branch-and-bound approach for nonlinear semi-infinite problems," European Journal of Operational Research, Elsevier, vol. 282(2), pages 438-452.
    4. Martin, Benjamin & Goldsztejn, Alexandre & Granvilliers, Laurent & Jermann, Christophe, 2017. "Constraint propagation using dominance in interval Branch & Bound for nonlinear biobjective optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 934-948.
    5. Bertrand Neveu & Martin Gorce & Pascal Monasse & Gilles Trombettoni, 2019. "A generic interval branch and bound algorithm for parameter estimation," Journal of Global Optimization, Springer, vol. 73(3), pages 515-535, March.
    6. Ignacio Araya & Bertrand Neveu, 2018. "lsmear: a variable selection strategy for interval branch and bound solvers," Journal of Global Optimization, Springer, vol. 71(3), pages 483-500, July.
    7. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    8. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.
    9. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    10. Atashpaz Gargari, Masoud & Sahraeian, Rashed, 2023. "An exact criterion space search method for a bi-objective nursing home location and allocation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 166-180.
    11. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    12. Amir Ahmadi-Javid & Nasrin Ramshe, 2019. "Designing flexible loop-based material handling AGV paths with cell-adjacency priorities: an efficient cutting-plane algorithm," 4OR, Springer, vol. 17(4), pages 373-400, December.
    13. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    14. Victor Reyes & Ignacio Araya, 2021. "AbsTaylor: upper bounding with inner regions in nonlinear continuous global optimization problems," Journal of Global Optimization, Springer, vol. 79(2), pages 413-429, February.
    15. I. Kaliszewski & J. Miroforidis, 2022. "Probing the Pareto front of a large-scale multiobjective problem with a MIP solver," Operational Research, Springer, vol. 22(5), pages 5617-5673, November.
    16. William Pettersson & Melih Ozlen, 2020. "Multiobjective Integer Programming: Synergistic Parallel Approaches," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 461-472, April.
    17. Ignacio Araya & Victor Reyes, 2016. "Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects," Journal of Global Optimization, Springer, vol. 65(4), pages 837-866, August.
    18. Barbati, Maria & Corrente, Salvatore & Greco, Salvatore, 2020. "A general space-time model for combinatorial optimization problems (and not only)," Omega, Elsevier, vol. 96(C).
    19. Audrey Cerqueus & Xavier Gandibleux & Anthony Przybylski & Frédéric Saubion, 2017. "On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem," Journal of Heuristics, Springer, vol. 23(5), pages 285-319, October.
    20. Fu, Yiwei & Lu, Zongxiang & Hu, Wei & Wu, Shuang & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Research on joint optimal dispatching method for hybrid power system considering system security," Applied Energy, Elsevier, vol. 238(C), pages 147-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:75:y:2019:i:1:d:10.1007_s10898-019-00768-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.