IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v74y2019i4d10.1007_s10898-018-0680-8.html
   My bibliography  Save this article

A multi-term, polyhedral relaxation of a 0–1 multilinear function for Boolean logical pattern generation

Author

Listed:
  • Kedong Yan

    (Nanjing University of Science and Technology)

  • Hong Seo Ryoo

    (Korea University)

Abstract

0–1 multilinear program (MP) holds a unifying theory to LAD pattern generation. This paper studies a multi-term relaxation of the objective function of the pattern generation MP for a tight polyhedral relaxation in terms of a small number of stronger 0–1 linear inequalities. Toward this goal, we analyze data in a graph to discover useful neighborhood properties among a set of objective terms around a single constraint term. In brief, they yield a set of facet-defining inequalities for the 0–1 multilinear polytope associated with the McCormick inequalities that they replace. The construction and practical utility of the new inequalities are illustrated on a small example and thoroughly demonstrated through numerical experiments with 12 public machine learning datasets.

Suggested Citation

  • Kedong Yan & Hong Seo Ryoo, 2019. "A multi-term, polyhedral relaxation of a 0–1 multilinear function for Boolean logical pattern generation," Journal of Global Optimization, Springer, vol. 74(4), pages 705-735, August.
  • Handle: RePEc:spr:jglopt:v:74:y:2019:i:4:d:10.1007_s10898-018-0680-8
    DOI: 10.1007/s10898-018-0680-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0680-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0680-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriela Alexe & Sorin Alexe & Peter Hammer & Bela Vizvari, 2006. "Pattern-based feature selection in genomics and proteomics," Annals of Operations Research, Springer, vol. 148(1), pages 189-201, November.
    2. Kedong Yan & Hong Seo Ryoo, 2017. "Strong valid inequalities for Boolean logical pattern generation," Journal of Global Optimization, Springer, vol. 69(1), pages 183-230, September.
    3. A.B. Hammer & P.L. Hammer & I. Muchnik, 1999. "Logical analysis of Chinese labor productivity patterns," Annals of Operations Research, Springer, vol. 87(0), pages 165-176, April.
    4. Jocelyn, Sabrina & Chinniah, Yuvin & Ouali, Mohamed-Salah & Yacout, Soumaya, 2017. "Application of logical analysis of data to machinery-related accident prevention based on scarce data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 223-236.
    5. Sorin Alexe & Eugene Blackstone & Peter Hammer & Hemant Ishwaran & Michael Lauer & Claire Pothier Snader, 2003. "Coronary Risk Prediction by Logical Analysis of Data," Annals of Operations Research, Springer, vol. 119(1), pages 15-42, March.
    6. M. W. Brauner & N. Brauner & P. L. Hammer & I. Lozina & D. Valeyre, 2007. "Logical Analysis of Computed Tomography Data to Differentiate Entities of Idiopathic Interstitial Pneumonias," Springer Optimization and Its Applications, in: Panos M. Pardalos & Vladimir L. Boginski & Alkis Vazacopoulos (ed.), Data Mining in Biomedicine, pages 193-208, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    2. Guo, Cui & Ryoo, Hong Seo, 2021. "On Pareto-Optimal Boolean Logical Patterns for Numerical Data," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Kedong Yan & Hong Seo Ryoo, 2017. "Strong valid inequalities for Boolean logical pattern generation," Journal of Global Optimization, Springer, vol. 69(1), pages 183-230, September.
    4. Kedong Yan & Dongjing Miao & Cui Guo & Chanying Huang, 2021. "Efficient feature selection for logical analysis of large-scale multi-class datasets," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 1-23, July.
    5. Kedong Yan & Hong Seo Ryoo, 2022. "Graph, clique and facet of boolean logical polytope," Journal of Global Optimization, Springer, vol. 82(4), pages 1015-1052, April.
    6. Janostik, Radek & Konecny, Jan & Krajča, Petr, 2020. "Interface between Logical Analysis of Data and Formal Concept Analysis," European Journal of Operational Research, Elsevier, vol. 284(2), pages 792-800.
    7. Travaughn C. Bain & Juan F. Avila-Herrera & Ersoy Subasi & Munevver Mine Subasi, 2020. "Logical analysis of multiclass data with relaxed patterns," Annals of Operations Research, Springer, vol. 287(1), pages 11-35, April.
    8. Jocelyn, Sabrina & Chinniah, Yuvin & Ouali, Mohamed-Salah & Yacout, Soumaya, 2017. "Application of logical analysis of data to machinery-related accident prevention based on scarce data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 223-236.
    9. Talayeh Razzaghi & Ilya Safro & Joseph Ewing & Ehsan Sadrfaridpour & John D. Scott, 2019. "Predictive models for bariatric surgery risks with imbalanced medical datasets," Annals of Operations Research, Springer, vol. 280(1), pages 1-18, September.
    10. Gabriela Alexe & Sorin Alexe & Peter Hammer & Bela Vizvari, 2006. "Pattern-based feature selection in genomics and proteomics," Annals of Operations Research, Springer, vol. 148(1), pages 189-201, November.
    11. S. Nadarajah & I. E. Okorie, 2021. "On the maximum and minimum for classes of univariate distributions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 290-309, April.
    12. Pierre Lemaire, 2011. "Extensions of Logical Analysis of Data for growth hormone deficiency diagnoses," Annals of Operations Research, Springer, vol. 186(1), pages 199-211, June.
    13. Chun-An Chou & Tibérius O. Bonates & Chungmok Lee & Wanpracha Art Chaovalitwongse, 2017. "Multi-pattern generation framework for logical analysis of data," Annals of Operations Research, Springer, vol. 249(1), pages 329-349, February.
    14. Maurizio Maravalle & Federica Ricca & Bruno Simeone & Vincenzo Spinelli, 2015. "Carpal Tunnel Syndrome automatic classification: electromyography vs. ultrasound imaging," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 100-123, April.
    15. Bagchi, Prabir & Lejeune, Miguel A. & Alam, A., 2014. "How supply competency affects FDI decisions: Some insights," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 239-251.
    16. Ahmed Ragab & Mohamed-Salah Ouali & Soumaya Yacout & Hany Osman, 2016. "Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan–Meier estimation," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 943-958, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:4:d:10.1007_s10898-018-0680-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.