IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v287y2020i1d10.1007_s10479-019-03389-7.html
   My bibliography  Save this article

Logical analysis of multiclass data with relaxed patterns

Author

Listed:
  • Travaughn C. Bain

    (Florida Institute of Technology)

  • Juan F. Avila-Herrera

    (Universidad Nacional Escuela de Matemática)

  • Ersoy Subasi

    (Florida Institute of Technology)

  • Munevver Mine Subasi

    (Florida Institute of Technology)

Abstract

An efficient and robust algorithm based on mixed integer linear programming is proposed to extend the Logical Analysis of Data (LAD) methodology to solve multiclass classification problems, where One-vs-Rest learning models are constructed to classify observations in predefined classes. The proposed algorithm uses two control parameters, homogeneity and prevalence, for identifying relaxed (fuzzy) patterns in multiclass datasets. The utility of the proposed method is demonstrated through experiments on multiclass benchmark datasets. Numerical experiments show that the efficiency and performance of the proposed multiclass LAD method with relaxed patterns is comparable to, if not better than, those of the previously developed LAD based multiclass classification as well as other well-known supervised learning methods.

Suggested Citation

  • Travaughn C. Bain & Juan F. Avila-Herrera & Ersoy Subasi & Munevver Mine Subasi, 2020. "Logical analysis of multiclass data with relaxed patterns," Annals of Operations Research, Springer, vol. 287(1), pages 11-35, April.
  • Handle: RePEc:spr:annopr:v:287:y:2020:i:1:d:10.1007_s10479-019-03389-7
    DOI: 10.1007/s10479-019-03389-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03389-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03389-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hammer & Tibérius Bonates, 2006. "Logical analysis of data—An overview: From combinatorial optimization to medical applications," Annals of Operations Research, Springer, vol. 148(1), pages 203-225, November.
    2. P. Hammer & A. Kogan & M. Lejeune, 2011. "Reverse-engineering country risk ratings: a combinatorial non-recursive model," Annals of Operations Research, Springer, vol. 188(1), pages 185-213, August.
    3. A.B. Hammer & P.L. Hammer & I. Muchnik, 1999. "Logical analysis of Chinese labor productivity patterns," Annals of Operations Research, Springer, vol. 87(0), pages 165-176, April.
    4. Pierre Lemaire, 2011. "Extensions of Logical Analysis of Data for growth hormone deficiency diagnoses," Annals of Operations Research, Springer, vol. 186(1), pages 199-211, June.
    5. Sorin Alexe & Eugene Blackstone & Peter Hammer & Hemant Ishwaran & Michael Lauer & Claire Pothier Snader, 2003. "Coronary Risk Prediction by Logical Analysis of Data," Annals of Operations Research, Springer, vol. 119(1), pages 15-42, March.
    6. Miguel Lejeune & François Margot, 2011. "Optimization for simulation: LAD accelerator," Annals of Operations Research, Springer, vol. 188(1), pages 285-305, August.
    7. Dupuis, Christine & Gamache, Michel & Pagé, Jean-François, 2012. "Logical analysis of data for estimating passenger show rates at Air Canada," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 78-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kedong Yan & Dongjing Miao & Cui Guo & Chanying Huang, 2021. "Efficient feature selection for logical analysis of large-scale multi-class datasets," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    2. Janostik, Radek & Konecny, Jan & Krajča, Petr, 2020. "Interface between Logical Analysis of Data and Formal Concept Analysis," European Journal of Operational Research, Elsevier, vol. 284(2), pages 792-800.
    3. Bagchi, Prabir & Lejeune, Miguel A. & Alam, A., 2014. "How supply competency affects FDI decisions: Some insights," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 239-251.
    4. Pierre Lemaire, 2011. "Extensions of Logical Analysis of Data for growth hormone deficiency diagnoses," Annals of Operations Research, Springer, vol. 186(1), pages 199-211, June.
    5. Chun-An Chou & Tibérius O. Bonates & Chungmok Lee & Wanpracha Art Chaovalitwongse, 2017. "Multi-pattern generation framework for logical analysis of data," Annals of Operations Research, Springer, vol. 249(1), pages 329-349, February.
    6. Kedong Yan & Hong Seo Ryoo, 2019. "A multi-term, polyhedral relaxation of a 0–1 multilinear function for Boolean logical pattern generation," Journal of Global Optimization, Springer, vol. 74(4), pages 705-735, August.
    7. Maurizio Maravalle & Federica Ricca & Bruno Simeone & Vincenzo Spinelli, 2015. "Carpal Tunnel Syndrome automatic classification: electromyography vs. ultrasound imaging," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 100-123, April.
    8. Ahmed Ragab & Mohamed-Salah Ouali & Soumaya Yacout & Hany Osman, 2016. "Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan–Meier estimation," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 943-958, October.
    9. Miguel Lejeune & François Margot, 2011. "Optimization for simulation: LAD accelerator," Annals of Operations Research, Springer, vol. 188(1), pages 285-305, August.
    10. Jocelyn, Sabrina & Chinniah, Yuvin & Ouali, Mohamed-Salah & Yacout, Soumaya, 2017. "Application of logical analysis of data to machinery-related accident prevention based on scarce data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 223-236.
    11. Kedong Yan & Hong Seo Ryoo, 2017. "Strong valid inequalities for Boolean logical pattern generation," Journal of Global Optimization, Springer, vol. 69(1), pages 183-230, September.
    12. Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
    13. Ahmed Ragab & Soumaya Yacout & Mohamed-Salah Ouali & Hany Osman, 2019. "Prognostics of multiple failure modes in rotating machinery using a pattern-based classifier and cumulative incidence functions," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 255-274, January.
    14. de Vos, Wout & Balvert, Marleen, 2023. "RPA : Learning Interpretable Input-Output Relationships by Counting Samples," Other publications TiSEM 70276b7f-9026-46ad-a8e8-1, Tilburg University, School of Economics and Management.
    15. Guo, Xiaolong & Dong, Yufeng & Ling, Liuyi, 2016. "Customer perspective on overbooking: The failure of customers to enjoy their reserved services, accidental or intended?," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 65-72.
    16. Marleen Balvert, 2024. "Iterative Rule Extension for Logic Analysis of Data: An MILP-Based Heuristic to Derive Interpretable Binary Classifiers from Large Data Sets," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 723-741, May.
    17. Fawaz Alsolami & Talha Amin & Igor Chikalov & Mikhail Moshkov, 2018. "Bi-criteria optimization problems for decision rules," Annals of Operations Research, Springer, vol. 271(2), pages 279-295, December.
    18. Talayeh Razzaghi & Ilya Safro & Joseph Ewing & Ehsan Sadrfaridpour & John D. Scott, 2019. "Predictive models for bariatric surgery risks with imbalanced medical datasets," Annals of Operations Research, Springer, vol. 280(1), pages 1-18, September.
    19. Kedong Yan & Dongjing Miao & Cui Guo & Chanying Huang, 2021. "Efficient feature selection for logical analysis of large-scale multi-class datasets," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 1-23, July.
    20. Gabriela Alexe & Sorin Alexe & Peter Hammer & Bela Vizvari, 2006. "Pattern-based feature selection in genomics and proteomics," Annals of Operations Research, Springer, vol. 148(1), pages 189-201, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:287:y:2020:i:1:d:10.1007_s10479-019-03389-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.