IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-69319-4_12.html
   My bibliography  Save this book chapter

Logical Analysis of Computed Tomography Data to Differentiate Entities of Idiopathic Interstitial Pneumonias

In: Data Mining in Biomedicine

Author

Listed:
  • M. W. Brauner

    (Université Paris 13 et Hôpital Avicenne AP-HP)

  • N. Brauner

    (Laboratoire Leibniz-IMAG)

  • P. L. Hammer

    (Rutgers University)

  • I. Lozina

    (Rutgers University)

  • D. Valeyre

    (Université Paris 13 et Hôpital Avicenne AP-HP)

Abstract

The aim of this chapter is to analyze computed tomography (CT) data by using the Logical Analysis of Data (LAD) methodology in order to distinguish between three types of idiopathic interstitial pneumonias (IIPs). The chapter demonstrates that LAD can distinguish different forms of IIPs with high accuracy It shows also that the patterns developed by LAD techniques provide additional information about outliers, redundant features, the relative significance of attributes, and makes possible the identification of promoters and blockers of various forms of IIPs.

Suggested Citation

  • M. W. Brauner & N. Brauner & P. L. Hammer & I. Lozina & D. Valeyre, 2007. "Logical Analysis of Computed Tomography Data to Differentiate Entities of Idiopathic Interstitial Pneumonias," Springer Optimization and Its Applications, in: Panos M. Pardalos & Vladimir L. Boginski & Alkis Vazacopoulos (ed.), Data Mining in Biomedicine, pages 193-208, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-69319-4_12
    DOI: 10.1007/978-0-387-69319-4_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    2. Kedong Yan & Hong Seo Ryoo, 2022. "Graph, clique and facet of boolean logical polytope," Journal of Global Optimization, Springer, vol. 82(4), pages 1015-1052, April.
    3. Guo, Cui & Ryoo, Hong Seo, 2021. "On Pareto-Optimal Boolean Logical Patterns for Numerical Data," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    4. Kedong Yan & Dongjing Miao & Cui Guo & Chanying Huang, 2021. "Efficient feature selection for logical analysis of large-scale multi-class datasets," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 1-23, July.
    5. Kedong Yan & Hong Seo Ryoo, 2017. "Strong valid inequalities for Boolean logical pattern generation," Journal of Global Optimization, Springer, vol. 69(1), pages 183-230, September.
    6. Jocelyn, Sabrina & Chinniah, Yuvin & Ouali, Mohamed-Salah & Yacout, Soumaya, 2017. "Application of logical analysis of data to machinery-related accident prevention based on scarce data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 223-236.
    7. Kedong Yan & Hong Seo Ryoo, 2019. "A multi-term, polyhedral relaxation of a 0–1 multilinear function for Boolean logical pattern generation," Journal of Global Optimization, Springer, vol. 74(4), pages 705-735, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-69319-4_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.