IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v65y2016i4d10.1007_s10898-015-0389-x.html
   My bibliography  Save this article

A biased random-key genetic algorithm to maximize the number of accepted lightpaths in WDM optical networks

Author

Listed:
  • Julliany S. Brandão

    (Universidade Federal Fluminense (UFF))

  • Thiago F. Noronha

    (Universidade Federal de Minas Gerais (UFMG))

  • Celso C. Ribeiro

    (Universidade Federal Fluminense (UFF))

Abstract

Given a set of lightpath requests, the problem of routing and wavelength (RWA) assignment in wavelength division multiplexing (WDM) optical networks consists in routing a subset of these requests and assigning a wavelength to each of them, such that two lightpaths that share a common link are assigned to different wavelengths. There are many variants of this problem in the literature. We focus in the variant in which the objective is to maximize the number of requests that may be accepted, given a limited set of available wavelengths. This problem is called max-RWA and it is of practical and theoretical interest, because algorithms for this variant can be extended for other RWA problems that arise from the design of WDM optical networks. A number of exact algorithms based on integer programming formulations have been proposed in the literature to solve max-RWA, as well as algorithms to provide upper bounds to the optimal solution value. However, the algorithms based on the state-of-the-art formulations in the literature cannot solve the largest instances to optimality. For these instances, only upper bounds to the value of the optimal solutions are known. The literature on heuristics for max-RWA is short and focus mainly on solving small size instances with up to 27 nodes. In this paper, we propose new greedy constructive heuristics and a biased random-key genetic algorithm, based on the best of the proposed greedy heuristics. Computational experiments showed that the new heuristic outperforms the best ones in literature. Furthermore, for the largest instances in the literature where only upper bounds to the value of the optimal solutions are known, the average optimality gap of the best of the proposed heuristics is smaller than 4 %.

Suggested Citation

  • Julliany S. Brandão & Thiago F. Noronha & Celso C. Ribeiro, 2016. "A biased random-key genetic algorithm to maximize the number of accepted lightpaths in WDM optical networks," Journal of Global Optimization, Springer, vol. 65(4), pages 813-835, August.
  • Handle: RePEc:spr:jglopt:v:65:y:2016:i:4:d:10.1007_s10898-015-0389-x
    DOI: 10.1007/s10898-015-0389-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-015-0389-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-015-0389-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thiago Noronha & Mauricio Resende & Celso Ribeiro, 2011. "A biased random-key genetic algorithm for routing and wavelength assignment," Journal of Global Optimization, Springer, vol. 50(3), pages 503-518, July.
    2. Celso Ribeiro & Isabel Rosseti & Reinaldo Vallejos, 2012. "Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms," Journal of Global Optimization, Springer, vol. 54(2), pages 405-429, October.
    3. Skorin-Kapov, Nina, 2007. "Routing and wavelength assignment in optical networks using bin packing based algorithms," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1167-1179, March.
    4. M. Ericsson & M.G.C. Resende & P.M. Pardalos, 2002. "A Genetic Algorithm for the Weight Setting Problem in OSPF Routing," Journal of Combinatorial Optimization, Springer, vol. 6(3), pages 299-333, September.
    5. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    6. Goncalves, Jose Fernando & de Magalhaes Mendes, Jorge Jose & Resende, Mauricio G. C., 2005. "A hybrid genetic algorithm for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 167(1), pages 77-95, November.
    7. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Q. Pinto & Celso C. Ribeiro & Isabel Rosseti & Thiago F. Noronha, 2020. "A biased random-key genetic algorithm for routing and wavelength assignment under a sliding scheduled traffic model," Journal of Global Optimization, Springer, vol. 77(4), pages 949-973, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    2. Mauricio Resende, 2012. "Biased random-key genetic algorithms with applications in telecommunications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 130-153, April.
    3. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    4. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    5. Andrade, Carlos E. & Toso, Rodrigo F. & Gonçalves, José F. & Resende, Mauricio G.C., 2021. "The Multi-Parent Biased Random-Key Genetic Algorithm with Implicit Path-Relinking and its real-world applications," European Journal of Operational Research, Elsevier, vol. 289(1), pages 17-30.
    6. Bruno Q. Pinto & Celso C. Ribeiro & Isabel Rosseti & Thiago F. Noronha, 2020. "A biased random-key genetic algorithm for routing and wavelength assignment under a sliding scheduled traffic model," Journal of Global Optimization, Springer, vol. 77(4), pages 949-973, August.
    7. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    8. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    9. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.
    10. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    11. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    12. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    13. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    14. Ricardo Silva & Mauricio Resende & Panos Pardalos, 2014. "Finding multiple roots of a box-constrained system of nonlinear equations with a biased random-key genetic algorithm," Journal of Global Optimization, Springer, vol. 60(2), pages 289-306, October.
    15. Xinyun Wu & Shengfeng Yan & Xin Wan & Zhipeng Lü, 2016. "Multi-neighborhood based iterated tabu search for routing and wavelength assignment problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 445-468, August.
    16. Geiza Silva & André Leite & Raydonal Ospina & Víctor Leiva & Jorge Figueroa-Zúñiga & Cecilia Castro, 2023. "Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem," Mathematics, MDPI, vol. 11(14), pages 1-11, July.
    17. Pinto, Bruno Q. & Ribeiro, Celso C. & Rosseti, Isabel & Plastino, Alexandre, 2018. "A biased random-key genetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 849-865.
    18. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
    19. R. M. A. Silva & M. G. C. Resende & P. M. Pardalos, 2015. "A Python/C++ library for bound-constrained global optimization using a biased random-key genetic algorithm," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 710-728, October.
    20. Gonçalves, José Fernando & Resende, Mauricio G.C., 2013. "A biased random key genetic algorithm for 2D and 3D bin packing problems," International Journal of Production Economics, Elsevier, vol. 145(2), pages 500-510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:65:y:2016:i:4:d:10.1007_s10898-015-0389-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.