IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i2p327-341.html
   My bibliography  Save this article

Error estimation in nonlinear optimization

Author

Listed:

Abstract

Methods are developed and analyzed for estimating the distance to a local minimizer of a nonlinear programming problem. One estimate, based on the solution of a constrained convex quadratic program, can be used when strict complementary slackness and the second-order sufficient optimality conditions hold. A second estimate, based on the solution of an unconstrained nonconvex, nonsmooth optimization problem, is valid even when strict complementary slackness is violated. Both estimates are valid in a neighborhood of a local minimizer. An active set algorithm is developed for computing a stationary point of the nonsmooth error estimator. Each iteration of the algorithm requires the solution of a symmetric, positive semidefinite linear system, followed by a line search. Convergence is achieved in a finite number of iterations. The error bounds are based on stability properties for nonlinear programs. The theory is illustrated by some numerical examples. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • William Hager & Delphine Mico-Umutesi, 2014. "Error estimation in nonlinear optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 327-341, July.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:327-341
    DOI: 10.1007/s10898-014-0186-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0186-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0186-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joydeep Dutta & Kalyanmoy Deb & Rupesh Tulshyan & Ramnik Arora, 2013. "Approximate KKT points and a proximity measure for termination," Journal of Global Optimization, Springer, vol. 56(4), pages 1463-1499, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    2. Liguo Jiao & Jae Hyoung Lee, 2018. "Approximate Optimality and Approximate Duality for Quasi Approximate Solutions in Robust Convex Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 74-93, January.
    3. Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
    4. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    5. Giorgio Giorgi & Bienvenido Jiménez & Vicente Novo, 2016. "Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 70-89, October.
    6. Min Feng & Shengjie Li, 2018. "An approximate strong KKT condition for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 489-509, October.
    7. Mohamed Abouhawwash & Kalyanmoy Deb, 2021. "Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics," Journal of Heuristics, Springer, vol. 27(4), pages 575-614, August.
    8. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.
    9. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    10. Elias S. Helou & Sandra A. Santos & Lucas E. A. Simões, 2020. "Analysis of a New Sequential Optimality Condition Applied to Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 433-447, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:2:p:327-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.