IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i2p459-487.html
   My bibliography  Save this article

A continuation approach to mode-finding of multivariate Gaussian mixtures and kernel density estimates

Author

Listed:
  • Seppo Pulkkinen
  • Marko Mäkelä
  • Napsu Karmitsa

Abstract

Gaussian mixtures (i.e. linear combinations of multivariate Gaussian probability densities) appear in numerous applications due to their universal ability to approximate multimodal probability distributions. Finding the modes (maxima) of a Gaussian mixture is a fundamental problem arising in many practical applications such as machine learning and digital image processing. In this paper, we propose a computationally efficient method for finding a significant mode of the Gaussian mixture. Such a mode represents an area of large probability, and it often coincides with the global mode of the mixture. The proposed method uses a Gaussian convolution in order to remove undesired local maxima of the Gaussian mixture and preserve its underlying structure. The transformation between the maximizers of the smoothed Gaussian mixture and the original one is formulated as a differential equation. A robust trust region method for tracing the solution curve of this differential equation is described. Our formulation also allows mixtures with negative weights or even negative values, which occur in some applications related to machine learning or quantum mechanics. The applicability of the method to mode-finding of Gaussian kernel density estimates obtained from experimental data is illustrated. Finally, some numerical results are given to demonstrate the ability of the method to find significant modes of Gaussian mixtures and kernel density estimates. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Seppo Pulkkinen & Marko Mäkelä & Napsu Karmitsa, 2013. "A continuation approach to mode-finding of multivariate Gaussian mixtures and kernel density estimates," Journal of Global Optimization, Springer, vol. 56(2), pages 459-487, June.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:2:p:459-487
    DOI: 10.1007/s10898-011-9833-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9833-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9833-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarn Duong & Martin L. Hazelton, 2005. "Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pulkkinen, Seppo, 2015. "Ridge-based method for finding curvilinear structures from noisy data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 89-109.
    2. Nan Yang & Yu Huang & Dengxu Hou & Songkai Liu & Di Ye & Bangtian Dong & Youping Fan, 2019. "Adaptive Nonparametric Kernel Density Estimation Approach for Joint Probability Density Function Modeling of Multiple Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    2. Billings, Stephen B. & Johnson, Erik B., 2012. "A non-parametric test for industrial specialization," Journal of Urban Economics, Elsevier, vol. 71(3), pages 312-331.
    3. Boris Branisa & Adriana Cardozo, 2009. "Regional Growth Convergence in Colombia Using Social Indicators," Ibero America Institute for Econ. Research (IAI) Discussion Papers 195, Ibero-America Institute for Economic Research.
    4. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    5. Alexey Miroshnikov & Evgeny Savelev, 2019. "Asymptotic properties of parallel Bayesian kernel density estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 771-810, August.
    6. Boris Branisa & Adriana Cardozo, 2009. "Revisiting the Regional Growth Convergence Debate in Colombia Using Income Indicators," Ibero America Institute for Econ. Research (IAI) Discussion Papers 194, Ibero-America Institute for Economic Research, revised 21 Aug 2009.
    7. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    8. Yan, Hanhuan & Han, Liyan, 2019. "Empirical distributions of stock returns: Mixed normal or kernel density?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 473-486.
    9. Sigve Hovda, 2014. "Using pseudometrics in kernel density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 669-696, December.
    10. Simone Giannerini & Greta Goracci, 2023. "Entropy-Based Tests for Complex Dependence in Economic and Financial Time Series with the R Package tseriesEntropy," Mathematics, MDPI, vol. 11(3), pages 1-27, February.
    11. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    12. Pulkkinen, Seppo, 2015. "Ridge-based method for finding curvilinear structures from noisy data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 89-109.
    13. Surya T. Tokdar & Ryan Martin, 2021. "Bayesian Test of Normality Versus a Dirichlet Process Mixture Alternative," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 66-96, May.
    14. Karim M Abadir & Michel Lubrano, 2023. "Explicit solutions for the asymptotically-optimal bandwidth in cross validation," AMSE Working Papers 2336, Aix-Marseille School of Economics, France.
    15. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    16. Maik Eisenbeiss & Goran Kauermann & Willi Semmler, 2007. "Estimating Beta-Coefficients of German Stock Data: A Non-Parametric Approach," The European Journal of Finance, Taylor & Francis Journals, vol. 13(6), pages 503-522.
    17. Rob J. Hyndman & Han Lin Shang, 2008. "Rainbow plots, Bagplots and Boxplots for Functional Data," Monash Econometrics and Business Statistics Working Papers 9/08, Monash University, Department of Econometrics and Business Statistics.
    18. J. Chacón & T. Duong, 2010. "Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 375-398, August.
    19. Horová, Ivana & Koláček, Jan & Vopatová, Kamila, 2013. "Full bandwidth matrix selectors for gradient kernel density estimate," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 364-376.
    20. Schoch, Tobias & Staub, Kaspar & Pfister, Christian, 2012. "Social inequality and the biological standard of living: An anthropometric analysis of Swiss conscription data, 1875–1950," Economics & Human Biology, Elsevier, vol. 10(2), pages 154-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:2:p:459-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.