IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v103y2016icp56-67.html
   My bibliography  Save this article

Bandwidth selection for kernel log-density estimation

Author

Listed:
  • Hazelton, Martin L.
  • Cox, Murray P.

Abstract

Kernel estimation of the logarithm of a probability density function at a given evaluation point is studied. The properties of the kernel log-density estimator are heavily influenced by the unboundedness of the log function at zero. In particular, standard asymptotic expansions can provide a poor guide to finite sample behaviour for this estimator, with consequences for the choice of methodology for bandwidth selection. In response, a new approximate cross-validation bandwidth selector is developed. Its theoretical properties are explored and its finite sample behaviour examined in numerical experiments. The proposed methodology is then applied to estimation of log-likelihoods for a complex genetic model used in determining migration rates between village communities on the Indonesian island of Sumba.

Suggested Citation

  • Hazelton, Martin L. & Cox, Murray P., 2016. "Bandwidth selection for kernel log-density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 56-67.
  • Handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:56-67
    DOI: 10.1016/j.csda.2016.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301050
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    2. Vincent Plagnol & Jeffrey D Wall, 2006. "Possible Ancestral Structure in Human Populations," PLOS Genetics, Public Library of Science, vol. 2(7), pages 1-8, July.
    3. Tarn Duong & Martin L. Hazelton, 2005. "Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506, September.
    4. repec:dau:papers:123456789/5724 is not listed on IDEAS
    5. Peter Hall & Sally Morton, 1993. "On the estimation of entropy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(1), pages 69-88, March.
    6. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aushev, Alexander & Pesonen, Henri & Heinonen, Markus & Corander, Jukka & Kaski, Samuel, 2022. "Likelihood-free inference with deep Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. Nunes Matthew A & Balding David J, 2010. "On Optimal Selection of Summary Statistics for Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, September.
    3. Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    4. Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
    5. Farmer, J. Doyne & Dyer, Joel & Cannon, Patrick & Schmon, Sebastian, 2022. "Black-box Bayesian inference for economic agent-based models," INET Oxford Working Papers 2022-05, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    6. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    7. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869, December.
    8. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    9. Billings, Stephen B. & Johnson, Erik B., 2012. "A non-parametric test for industrial specialization," Journal of Urban Economics, Elsevier, vol. 71(3), pages 312-331.
    10. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    11. Nir Billfeld & Moshe Kim, 2024. "Context-dependent Causality (the Non-Nonotonic Case)," Papers 2404.05021, arXiv.org.
    12. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    13. Aryal, Nanda R. & Jones, Owen D., 2020. "Fitting the Bartlett–Lewis rainfall model using Approximate Bayesian Computation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 153-163.
    14. Boris Branisa & Adriana Cardozo, 2009. "Regional Growth Convergence in Colombia Using Social Indicators," Ibero America Institute for Econ. Research (IAI) Discussion Papers 195, Ibero-America Institute for Economic Research.
    15. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    16. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    17. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    18. Kai Yuan & Xumin Ni & Chang Liu & Yuwen Pan & Lian Deng & Rui Zhang & Yang Gao & Xueling Ge & Jiaojiao Liu & Xixian Ma & Haiyi Lou & Taoyang Wu & Shuhua Xu, 2021. "Refining models of archaic admixture in Eurasia with ArchaicSeeker 2.0," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    20. George Karabatsos, 2023. "Approximate Bayesian computation using asymptotically normal point estimates," Computational Statistics, Springer, vol. 38(2), pages 531-568, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.