IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v53y2012i2p255-269.html
   My bibliography  Save this article

On duality gap in binary quadratic programming

Author

Listed:
  • X. Sun
  • C. Liu
  • D. Li
  • J. Gao

Abstract

No abstract is available for this item.

Suggested Citation

  • X. Sun & C. Liu & D. Li & J. Gao, 2012. "On duality gap in binary quadratic programming," Journal of Global Optimization, Springer, vol. 53(2), pages 255-269, June.
  • Handle: RePEc:spr:jglopt:v:53:y:2012:i:2:p:255-269
    DOI: 10.1007/s10898-011-9683-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9683-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9683-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan Li & Xiaoling Sun & Shenshen Gu & Jianjun Gao & Chunli Liu, 2010. "Polynomially Solvable Cases of Binary Quadratic Programs," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Rentsen Enkhbat & Ider Tseveendorj (ed.), Optimization and Optimal Control, pages 199-225, Springer.
    2. Eranda Çela & Bettina Klinz & Christophe Meyer, 2006. "Polynomially solvable cases of the constant rank unconstrained quadratic 0-1 programming problem," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 187-215, November.
    3. Xiaojin Zheng & Xiaoling Sun & Duan Li & Yong Xia, 2010. "Duality Gap Estimation of Linear Equality Constrained Binary Quadratic Programming," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 864-880, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    2. Liu, Weiwei & Kong, Nan & Wang, Mingzheng & Zhang, Lingling, 2021. "Sustainable multi-commodity capacitated facility location problem with complementarity demand functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    3. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    4. Yong Xia & Ruey-Lin Sheu & Xiaoling Sun & Duan Li, 2013. "Tightening a copositive relaxation for standard quadratic optimization problems," Computational Optimization and Applications, Springer, vol. 55(2), pages 379-398, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Phillipson & Harshil Singh Bhatia, 2020. "Portfolio Optimisation Using the D-Wave Quantum Annealer," Papers 2012.01121, arXiv.org.
    2. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    3. Esteban Aguilera & Jins de Jong & Frank Phillipson & Skander Taamallah & Mischa Vos, 2024. "Multi-Objective Portfolio Optimization Using a Quantum Annealer," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
    4. Yong Xia & Ruey-Lin Sheu & Xiaoling Sun & Duan Li, 2013. "Tightening a copositive relaxation for standard quadratic optimization problems," Computational Optimization and Applications, Springer, vol. 55(2), pages 379-398, June.
    5. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    6. Xia, Yong & Sheu, Ruey-Lin & Sun, Xiaoling & Li, Duan, 2012. "Improved estimation of duality gap in binary quadratic programming using a weighted distance measure," European Journal of Operational Research, Elsevier, vol. 218(2), pages 351-357.
    7. Ben-Ameur, Walid & Neto, José, 2010. "Spectral bounds for unconstrained (-1,1)-quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 15-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:53:y:2012:i:2:p:255-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.