IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-89496-6_11.html
   My bibliography  Save this book chapter

Polynomially Solvable Cases of Binary Quadratic Programs

In: Optimization and Optimal Control

Author

Listed:
  • Duan Li

    (The Chinese University of Hong Kong)

  • Xiaoling Sun

    (Fudan University)

  • Shenshen Gu

    (Shanghai University)

  • Jianjun Gao

    (The Chinese University of Hong Kong)

  • Chunli Liu

    (Shanghai University of Finance and Economics)

Abstract

Summary We summarize in this chapter polynomially solvable subclasses of binary quadratic programming problems studied in the literature and report some new polynomially solvable subclasses revealed in our recent research. It is well known that the binary quadratic programming program is NP-hard in general. Identifying polynomially solvable subclasses of binary quadratic programming problems not only offers theoretical insight into the complicated nature of the problem but also provides platforms to design relaxation schemes for exact solution methods. We discuss and analyze in this chapter six polynomially solvable subclasses of binary quadratic programs, including problems with special structures in the matrix Q of the quadratic objective function, problems defined by a special graph or a logic circuit, and problems characterized by zero duality gap of the SDP relaxation. Examples and geometric illustrations are presented to provide algorithmic and intuitive insights into the problems.

Suggested Citation

  • Duan Li & Xiaoling Sun & Shenshen Gu & Jianjun Gao & Chunli Liu, 2010. "Polynomially Solvable Cases of Binary Quadratic Programs," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Rentsen Enkhbat & Ider Tseveendorj (ed.), Optimization and Optimal Control, pages 199-225, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-89496-6_11
    DOI: 10.1007/978-0-387-89496-6_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    2. Esteban Aguilera & Jins de Jong & Frank Phillipson & Skander Taamallah & Mischa Vos, 2024. "Multi-Objective Portfolio Optimization Using a Quantum Annealer," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
    3. Frank Phillipson & Harshil Singh Bhatia, 2020. "Portfolio Optimisation Using the D-Wave Quantum Annealer," Papers 2012.01121, arXiv.org.
    4. X. Sun & C. Liu & D. Li & J. Gao, 2012. "On duality gap in binary quadratic programming," Journal of Global Optimization, Springer, vol. 53(2), pages 255-269, June.
    5. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-89496-6_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.