IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v30y2004i2p195-206.html
   My bibliography  Save this article

An Approximation Approach to Non-strictly Convex Quadratic Semi-infinite Programming

Author

Listed:
  • S. Ito
  • Y. Liu
  • K. Teo

Abstract

No abstract is available for this item.

Suggested Citation

  • S. Ito & Y. Liu & K. Teo, 2004. "An Approximation Approach to Non-strictly Convex Quadratic Semi-infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 195-206, November.
  • Handle: RePEc:spr:jglopt:v:30:y:2004:i:2:p:195-206
    DOI: 10.1007/s10898-004-8278-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-004-8278-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-004-8278-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Ito & Y. Liu & K.L. Teo, 2000. "A Dual Parametrization Method for Convex Semi-Infinite Programming," Annals of Operations Research, Springer, vol. 98(1), pages 189-213, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Auslender & A. Ferrer & M. Goberna & M. López, 2015. "Comparative study of RPSALG algorithm for convex semi-infinite programming," Computational Optimization and Applications, Springer, vol. 60(1), pages 59-87, January.
    2. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    3. Chen Ling & Qin Ni & Liqun Qi & Soon-Yi Wu, 2010. "A new smoothing Newton-type algorithm for semi-infinite programming," Journal of Global Optimization, Springer, vol. 47(1), pages 133-159, May.
    4. Le Thanh Tung, 2022. "Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints," Annals of Operations Research, Springer, vol. 311(2), pages 1307-1334, April.
    5. S. K. Mishra & Vinay Singh & Vivek Laha, 2016. "On duality for mathematical programs with vanishing constraints," Annals of Operations Research, Springer, vol. 243(1), pages 249-272, August.
    6. Ping Jin & Chen Ling & Huifei Shen, 2015. "A smoothing Levenberg–Marquardt algorithm for semi-infinite programming," Computational Optimization and Applications, Springer, vol. 60(3), pages 675-695, April.
    7. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:30:y:2004:i:2:p:195-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.