IDEAS home Printed from https://ideas.repec.org/a/spr/jecstr/v7y2018i1d10.1186_s40008-018-0131-1.html
   My bibliography  Save this article

Implementing hybrid LCA routines in an input–output virtual laboratory

Author

Listed:
  • Man Yu

    (University of New South Wales)

  • Thomas Wiedmann

    (University of New South Wales
    The University of Sydney)

Abstract

Hybrid life cycle assessment (LCA) has been developed for almost 40 years, but its applications are still limited to certain products/industries. This study endeavors to expand the accessibility of hybrid LCA from specialists to practitioners by developing a streamlined and semi-automated hybrid LCA data compilation routine in an input–output virtual laboratory. Data from the Australian Life Cycle Inventory Database (AusLCI) and the Australian Industrial Ecology Virtual Laboratory are used to demonstrate this routine. A hybridized AusLCI database is generated and used to calculate the hybrid carbon footprint intensities (CFIs) of all AusLCI processes. How different assumptions and settings on the hybridization influence the difference between process-based and hybrid results is further investigated and discussed intensively. Major inputs from the IO system are identified, and the sensitivity and uncertainty of hybrid results against unit price variations and EEIO table uncertainties are quantified via Monte Carlo simulations. On average, process-based CFIs are 21–32% lower than the corresponding hybrid CFIs, which is larger than the uncertainties resulting from either price variation, EEIO data uncertainty or scenarios on how the hybridization is conducted. Although the data are Australian specific, the underlying procedure is applicable to any country as long as suitable data are available.

Suggested Citation

  • Man Yu & Thomas Wiedmann, 2018. "Implementing hybrid LCA routines in an input–output virtual laboratory," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
  • Handle: RePEc:spr:jecstr:v:7:y:2018:i:1:d:10.1186_s40008-018-0131-1
    DOI: 10.1186/s40008-018-0131-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40008-018-0131-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40008-018-0131-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    2. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    3. Bullard, Clark W, III & Sebald, Anthony V, 1977. "Effects of Parametric Uncertainty and Technological Change on Input-Output Models," The Review of Economics and Statistics, MIT Press, vol. 59(1), pages 75-81, February.
    4. Arne Geschke & Michalis Hadjikakou, 2017. "Virtual laboratories and MRIO analysis – an introduction," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 143-157, April.
    5. Edgar Hertwich & Niko Heeren & Brandon Kuczenski & Guillaume Majeau†Bettez & Rupert J. Myers & Stefan Pauliuk & Konstantin Stadler & Reid Lifset, 2018. "Nullius in Verba: Advancing Data Transparency in Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 6-17, February.
    6. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    7. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    8. Louise Laumann Kjaer & Niels Karim Høst-Madsen & Jannick H. Schmidt & Tim C. McAloone, 2015. "Application of Environmental Input-Output Analysis for Corporate and Product Environmental Footprints—Learnings from Three Cases," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    9. Hauke Ward & Leonie Wenz & Jan C. Steckel & Jan C. Minx, 2018. "Truncation Error Estimates in Process Life Cycle Assessment Using Input‐Output Analysis," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1080-1091, October.
    10. Manfred Lenzen & Richard Wood & Thomas Wiedmann, 2010. "Uncertainty Analysis For Multi-Region Input-Output Models - A Case Study Of The Uk'S Carbon Footprint," Economic Systems Research, Taylor & Francis Journals, vol. 22(1), pages 43-63.
    11. Dadhich, P. & Genovese, A. & Kumar, N. & Acquaye, A., 2015. "Developing sustainable supply chains in the UK construction industry: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 271-284.
    12. Eric D. Williams & Christopher L. Weber & Troy R. Hawkins, 2009. "Hybrid Framework for Managing Uncertainty in Life Cycle Inventories," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 928-944, December.
    13. Suh, Sangwon, 2006. "Reply: Downstream cut-offs in integrated hybrid life-cycle assessment," Ecological Economics, Elsevier, vol. 59(1), pages 7-12, August.
    14. Soo Huey Teh & Thomas Wiedmann & Stephen Moore, 2018. "Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-25, December.
    15. Peters, Glen P. & Hertwich, Edgar G., 2006. "A comment on "Functions, commodities and environmental impacts in an ecological-economic model"," Ecological Economics, Elsevier, vol. 59(1), pages 1-6, August.
    16. A. Lake & A. Acquaye & A. Genovese & N. Kumar & S.C.L. Koh, 2015. "An application of hybrid life cycle assessment as a decision support framework for green supply chains," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6495-6521, November.
    17. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    18. Bush, Ruth & Jacques, David A. & Scott, Kate & Barrett, John, 2014. "The carbon payback of micro-generation: An integrated hybrid input–output approach," Applied Energy, Elsevier, vol. 119(C), pages 85-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reinout Heijungs & Yi Yang & Hung‐Suck Park, 2022. "A or I‐A? Unifying the computational structures of process‐ and IO‐based LCA for clarity and consistency," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1824-1836, October.
    2. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    2. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    3. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    4. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    5. Xin, Li & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2015. "Challenges faced when energy meets water: CO2 and water implications of power generation in inner Mongolia of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 419-430.
    6. Soo Huey Teh & Thomas Wiedmann, 2018. "Decomposition of integrated hybrid life cycle inventories by origin and final-stage inputs," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-15, December.
    7. Maxime Agez & Richard Wood & Manuele Margni & Anders H. Strømman & Réjean Samson & Guillaume Majeau‐Bettez, 2020. "Hybridization of complete PLCA and MRIO databases for a comprehensive product system coverage," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 774-790, August.
    8. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    10. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    11. Soo Huey Teh & Thomas Wiedmann & Stephen Moore, 2018. "Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-25, December.
    12. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    13. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    14. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    15. Gemechu, E.D. & Butnar, I. & Llop, M. & Castells, F., 2012. "Environmental tax on products and services based on their carbon footprint: A case study of the pulp and paper sector," Energy Policy, Elsevier, vol. 50(C), pages 336-344.
    16. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    17. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    18. Manfred Lenzen & Mengyu Li & Arunima Malik & Francesco Pomponi & Ya-Yen Sun & Thomas Wiedmann & Futu Faturay & Jacob Fry & Blanca Gallego & Arne Geschke & Jorge Gómez-Paredes & Keiichiro Kanemoto & St, 2020. "Global socio-economic losses and environmental gains from the Coronavirus pandemic," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    19. Mathieu Saurat & Michael Ritthoff, 2013. "Calculating MIPS 2.0," Resources, MDPI, vol. 2(4), pages 1-27, October.
    20. Manfred Lenzen & Sven Lundie, 2012. "Constructing enterprise input-output tables - a case study of New Zealand dairy products," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecstr:v:7:y:2018:i:1:d:10.1186_s40008-018-0131-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.