IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v2y2013i4p581-607d29916.html
   My bibliography  Save this article

Calculating MIPS 2.0

Author

Listed:
  • Mathieu Saurat

    (Material Flows and Resource Management, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, Wuppertal 42103, Germany)

  • Michael Ritthoff

    (Material Flows and Resource Management, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, Wuppertal 42103, Germany)

Abstract

The Wuppertal Institute developed, in the early 1990s, an input-oriented lifecycle-wide resource accounting method, the “Material Input per Service-Unit” concept (MIPS), today also referred to as “Material Footprint”. The official handbook applicable to products, services, and processes describes a MS Excel-based sequential approach for calculating MIPS. Today’s computing power, available to every researcher, and access to software and databases dedicated to lifecycle analysis make calculating MIPS using matrix inversion possible. This also opens up possibilities for enhancing MIPS-models programmatically: parameterizing the foreground and background systems, batch modeling for producing time series, and computational algorithms enhancing interpretation. The article provides (1) an overview of the methods and tools used for calculating MIPS from its origins to today, and (2) demonstrates some of the programmatically enhanced capabilities offered to MIPS-practitioners.

Suggested Citation

  • Mathieu Saurat & Michael Ritthoff, 2013. "Calculating MIPS 2.0," Resources, MDPI, vol. 2(4), pages 1-27, October.
  • Handle: RePEc:gam:jresou:v:2:y:2013:i:4:p:581-607:d:29916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/2/4/581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/2/4/581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcel Timmer & Abdul A. Erumban & Reitze Gouma & Bart Los & Umed Temurshoev & Gaaitzen J. de Vries & I–aki Arto & Valeria Andreoni AurŽlien Genty & Frederik Neuwahl & JosŽ M. Rueda?Cantuche & Joseph , 2012. "The World Input-Output Database (WIOD): Contents, Sources and Methods," IIDE Discussion Papers 20120401, Institue for International and Development Economics.
    2. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    3. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    4. Eric D. Williams & Christopher L. Weber & Troy R. Hawkins, 2009. "Hybrid Framework for Managing Uncertainty in Life Cycle Inventories," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 928-944, December.
    5. Defourny, Jacques & Thorbecke, Erik, 1984. "Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework," Economic Journal, Royal Economic Society, vol. 94(373), pages 111-136, March.
    6. Heijungs, Reinout, 1994. "A generic method for the identification of options for cleaner products," Ecological Economics, Elsevier, vol. 10(1), pages 69-81, May.
    7. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    2. Suh, Sangwon, 2004. "Functions, commodities and environmental impacts in an ecological-economic model," Ecological Economics, Elsevier, vol. 48(4), pages 451-467, April.
    3. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    4. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    5. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    6. Gemechu, E.D. & Butnar, I. & Llop, M. & Castells, F., 2012. "Environmental tax on products and services based on their carbon footprint: A case study of the pulp and paper sector," Energy Policy, Elsevier, vol. 50(C), pages 336-344.
    7. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    8. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    9. Maxime Agez & Guillaume Majeau‐Bettez & Manuele Margni & Anders H. Strømman & Réjean Samson, 2020. "Lifting the veil on the correction of double counting incidents in hybrid life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 517-533, June.
    10. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
    11. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    12. Lenzen, Manfred, 2007. "Structural path analysis of ecosystem networks," Ecological Modelling, Elsevier, vol. 200(3), pages 334-342.
    13. Hong, Jingke & Shen, Qiping & Xue, Fan, 2016. "A multi-regional structural path analysis of the energy supply chain in China's construction industry," Energy Policy, Elsevier, vol. 92(C), pages 56-68.
    14. Irfan Ahmed & Claudio Socci & Francesca Severini & Qaiser Rafique Yasser & Rosita Pretaroli, 2018. "The structures of production, final demand and agricultural output: a Macro Multipliers analysis of the Nigerian economy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 691-739, December.
    15. Alexis Laurent & Bo P. Weidema & Jane Bare & Xun Liao & Danielle Maia de Souza & Massimo Pizzol & Serenella Sala & Hanna Schreiber & Nils Thonemann & Francesca Verones, 2020. "Methodological review and detailed guidance for the life cycle interpretation phase," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 986-1003, October.
    16. Zhang, Yan & Li, Yaoguang & Hubacek, Klaus & Tian, Xin & Lu, Zhongming, 2019. "Analysis of CO2 transfer processes involved in global trade based on ecological network analysis," Applied Energy, Elsevier, vol. 233, pages 576-583.
    17. Zhiyong Yang & Wenjie Dong & Jinfeng Xiu & Rufeng Dai & Jieming Chou, 2015. "Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-25, September.
    18. Reinout Heijungs & Yi Yang & Hung‐Suck Park, 2022. "A or I‐A? Unifying the computational structures of process‐ and IO‐based LCA for clarity and consistency," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1824-1836, October.
    19. Man Yu & Thomas Wiedmann, 2018. "Implementing hybrid LCA routines in an input–output virtual laboratory," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    20. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:2:y:2013:i:4:p:581-607:d:29916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.